scholarly journals Intraflagellar transport proteins undergo nonaxonemal staged hindrance between the recruiting distal appendages and the cilium

2017 ◽  
Author(s):  
T. Tony Yang ◽  
Minh Nguyet Thi Tran ◽  
Weng Man Chong ◽  
Chia-En Huang ◽  
Jung-Chi Liao

Primary cilia play a vital role in cellular sensing and signaling [1]. An essential component of ciliogenesis is intraflagellar transport (IFT), which first requires IFT-protein recruitment, IFT-protein–motor-protein assembly, axonemal engagement of IFT-protein complexes, and transition zone (TZ) gating [2–9]. The mechanistic understanding of these processes at the ciliary base was largely missing, because it is exceedingly challenging to observe the motion of IFT proteins in this crowded region using conventional microscopy. Here, we report short trajectory tracking of IFT proteins at the base of mammalian primary cilia by optimizing single-particle tracking photoactivated localization microscopy (sptPALM) [10, 11], balancing the imaging requirements of tracking speed, tracking duration, and localization precision for IFT88-mEOS4b in live human retinal pigment epithelial (hTERT-RPE-1) cells. Intriguingly, we found that mobile IFT proteins “switched gears” multiple times from the distal appendages (DAPs) to the ciliary compartment (CC), moving slowly in the DAPs, relatively fast in the proximal TZ, slowly again in the distal TZ, and then much faster in the CC. They could travel through the space between the DAPs and the axoneme without following DAP structures, and reached the space enveloped by the ciliary pocket in the proximal TZ. Together, our live-cell superresolution imaging revealed region-dependent slowdown of IFT proteins at the ciliary base, shedding light on staged control of ciliogenesis homeostasis.

2019 ◽  
Vol 30 (7) ◽  
pp. 828-837 ◽  
Author(s):  
T. Tony Yang ◽  
Minh Nguyet Thi Tran ◽  
Weng Man Chong ◽  
Chia-En Huang ◽  
Jung-Chi Liao

Primary cilia play a vital role in cellular sensing and signaling. An essential component of ciliogenesis is intraflagellar transport (IFT), which is involved in IFT protein recruitment, axonemal engagement of IFT protein complexes, and so on. The mechanistic understanding of these processes at the ciliary base was largely missing, because it is challenging to observe the motion of IFT proteins in this crowded region using conventional microscopy. Here, we report short-trajectory tracking of IFT proteins at the base of mammalian primary cilia by optimizing single-particle tracking photoactivated localization microscopy for IFT88-mEOS4b in live human retinal pigment epithelial cells. Intriguingly, we found that mobile IFT proteins “switched gears” multiple times from the distal appendages (DAPs) to the ciliary compartment (CC), moving slowly in the DAPs, relatively fast in the proximal transition zone (TZ), slowly again in the distal TZ, and then much faster in the CC. They could travel through the space between the DAPs and the axoneme without following DAP structures. We further revealed that BBS2 and IFT88 were highly populated at the distal TZ, a potential assembly site. Together, our live-cell single-particle tracking revealed region-dependent slowdown of IFT proteins at the ciliary base, shedding light on staged control of ciliary homeostasis.


2019 ◽  
Author(s):  
Wei Wang ◽  
Bailey A. Allard ◽  
Tana S. Pottorf ◽  
Jay L. Vivian ◽  
Pamela V. Tran

AbstractPrimary cilia are sensory organelles that are essential for eukaryotic development and health. These antenna-like structures are synthesized by intraflagellar transport protein complexes, IFT-B and IFT-A, which mediate bi-directional protein trafficking along the ciliary axoneme. Here using mouse embryonic fibroblasts (MEF), we investigate the ciliary roles of two mammalian orthologues of Chlamydomonas IFT-A gene, IFT139, namely Thm1 (also known as Ttc21b) and Thm2 (Ttc21a). Thm1 loss causes perinatal lethality, and Thm2 loss allows survival into adulthood. At E14.5, the number of Thm1;Thm2 double mutant embryos is lower than that for a Mendelian ratio, indicating deletion of Thm1 and Thm2 causes mid-gestational lethality. We examined the ciliary phenotypes of mutant MEF. Thm1-mutant MEF show decreased cilia assembly, shortened primary cilia, a retrograde IFT defect for IFT and BBS proteins, and reduced ciliary entry of membrane-associated proteins. Thm1-mutant cilia also show a retrograde transport defect for the Hedgehog transducer, Smoothened, and an impaired response to Smoothened agonist, SAG. Thm2-null MEF show normal ciliary dynamics and Hedgehog signaling, but additional loss of a Thm1 allele impairs response to SAG. Further, Thm1;Thm2 double mutant MEF show enhanced cilia disassembly, and relative to Thm1-null MEF, increased impairment of IFT81 retrograde transport and of INPP5E ciliary import. Thus, Thm1 and Thm2 have unique and redundant roles in MEF. Thm1 regulates cilia assembly, and together with Thm2, cilia disassembly. Moreover, Thm1 alone and together with Thm2, regulates ciliary protein trafficking, Hedgehog signaling, and embryogenesis. These findings shed light on mechanisms underlying Thm1-, Thm2- or IFT-A-mediated ciliopathies.


2009 ◽  
Vol 325 (1) ◽  
pp. 24-32 ◽  
Author(s):  
Marat Gorivodsky ◽  
Mahua Mukhopadhyay ◽  
Michaela Wilsch-Braeuninger ◽  
Matthew Phillips ◽  
Andreas Teufel ◽  
...  

Author(s):  
Wei Wang ◽  
Luciane M. Silva ◽  
Henry H. Wang ◽  
Matthew A. Kavanaugh ◽  
Tana S. Pottorf ◽  
...  

AbstractPrimary cilia are sensory organelles that are built and maintained by intraflagellar transport (IFT) multi-protein complexes. Deletion of certain ciliary genes in Autosomal Dominant Polycystic Kidney Disease (ADPKD) mouse models markedly attenuates PKD severity, indicating that a component of cilia dysfunction may have potential therapeutic value. To broaden the role of ciliary dysfunction, here we investigate the role of global deletion of Ift-A gene, Thm1, in juvenile and adult ADPKD mouse models. In cyst-lining cells of both juvenile and adult ADPKD models, cortical collecting duct cilia lengths and cytoplasmic and nuclear levels of the nutrient sensor, O-linked β-Nacetylglucosamine (O-GlcNAc) were increased. Relative to juvenile Pkd2 conditional knock-out mice, deletion of Thm1 together with Pkd2 both increased and reduced cystogenesis in a tubule-specific manner without altering kidney function, inflammation, cilia lengths, and ERK, STAT3 and OGlcNAc signaling. In contrast, Thm1 deletion in adult ADPKD mouse models markedly attenuated almost all features of PKD, including renal cystogenesis, inflammation, cilia lengths, and ERK, STAT3 and O-GlcNAc signaling. These data suggest that differential factors in the microenvironments between renal tubules and between developing and mature kidneys influence cilia and ADPKD pathobiology. Further, since O-GlcNAcylation directly regulates ciliary homeostasis and the balance between glycolysis and oxidative phosphorylation, we propose that increased O-GlcNAcylation may promote certain key ADPKD pathological processes.


2021 ◽  
Author(s):  
Yamato Ishida ◽  
Takuya Kobayashi ◽  
Shuhei Chiba ◽  
Yohei Katoh ◽  
Kazuhisa Nakayama

Abstract Primary cilia contain specific proteins to achieve their functions as cellular antennae. Ciliary protein trafficking is mediated by the intraflagellar transport (IFT) machinery containing the IFT-A and IFT-B complexes. Mutations in genes encoding the IFT-A subunits (IFT43, IFT121/WDR35, IFT122, IFT139/TTC21B, IFT140, and IFT144/WDR19) often result in skeletal ciliopathies, including cranioectodermal dysplasia (CED). We here characterized the molecular and cellular defects of CED caused by compound heterozygous mutations in IFT144 [the missense variant IFT144(L710S) and the nonsense variant IFT144(R1103*)]. These two variants were distinct with regard to their interactions with other IFT-A subunits and with the IFT-B complex. When exogenously expressed in IFT144-knockout (KO) cells, IFT144(L710S) as well as IFT144(WT) rescued both moderately compromised ciliogenesis and the abnormal localization of ciliary proteins. As the homozygous IFT144(L710S) mutation was found to cause autosomal recessive retinitis pigmentosa, IFT144(L710S) is likely to be hypomorphic at the cellular level. In striking contrast, the exogenous expression of IFT144(R1103*) in IFT144-KO cells exacerbated the ciliogenesis defects. The expression of IFT144(R1103*) together with IFT144(WT) restored the abnormal phenotypes of IFT144-KO cells. However, the coexpression of IFT144(R1103*) with the hypomorphic IFT144(L710S) variant in IFT144-KO cells, which mimics the genotype of compound heterozygous CED patients, resulted in severe ciliogenesis defects. Taken together, these observations demonstrate that compound heterozygous mutations in IFT144 cause severe ciliary defects via a complicated mechanism, where one allele can cause severe ciliary defects when combined with a hypomorphic allele.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hyowon Choi ◽  
Vedavathi Madhu ◽  
Irving M. Shapiro ◽  
Makarand V. Risbud

Abstract The nucleus pulposus (NP) cells adapt to their physiologically hyperosmotic microenvironment through Tonicity-responsive enhancer binding protein (TonEBP/nuclear factor of activated T-cell5 [NFAT5])-mediated osmoregulation. Primary cilia in different organs serve diverse roles including osmosensing, but its contribution to NP cell osmoadaptive response is unknown. A high percentage of cultured primary NP cells possessed primary cilia that changed length in response to osmotic stimuli. Stable silencing of Intraflagellar Transport 88 (Ift88) or Kinesin Family Member 3 A (Kif3a) to inhibit the formation of primary cilia did not affect hyperosmotic upregulation of TonEBP. While ShKif3a blocked hyperosmotic increase of TonEBP-Transactivation Domain (TAD) activity, overall the knockdown of either gene did not alter the hyperosmotic status of proximal promoter activities and transcription of key TonEBP targets. On the other hand, a small decrease in TonEBP level under hypoosmotic condition was attenuated by Ift88 or Kif3a knockdown. Noteworthy, none of the TonEBP target genes were responsive to hypoosmotic stimulus in control and Ift88 or Kif3a knockdown cells, suggesting the primary role of TonEBP in the hyperosmotic adaptation of NP cells. Similarly, in Kif3a null mouse embryonic fibroblasts (MEFs), the overall TonEBP-dependent hyperosmotic responses were preserved. Unlike NP cells, TonEBP targets were responsive to hypoosmolarity in wild-type MEFs, and these responses remained intact in Kif3a null MEFs. Together, these results suggest that primary cilia are dispensable for TonEBP-dependent osmoadaptive response.


2014 ◽  
Vol 25 (17) ◽  
pp. 2620-2633 ◽  
Author(s):  
Thierry Blisnick ◽  
Johanna Buisson ◽  
Sabrina Absalon ◽  
Alexandra Marie ◽  
Nadège Cayet ◽  
...  

Cilia and flagella are assembled by intraflagellar transport (IFT) of protein complexes that bring tubulin and other precursors to the incorporation site at their distal tip. Anterograde transport is driven by kinesin, whereas retrograde transport is ensured by a specific dynein. In the protist Trypanosoma brucei, two distinct genes encode fairly different dynein heavy chains (DHCs; ∼40% identity) termed DHC2.1 and DHC2.2, which form a heterodimer and are both essential for retrograde IFT. The stability of each heavy chain relies on the presence of a dynein light intermediate chain (DLI1; also known as XBX-1/D1bLIC). The presence of both heavy chains and of DLI1 at the base of the flagellum depends on the intermediate dynein chain DIC5 (FAP133/WDR34). In the IFT140RNAi mutant, an IFT-A protein essential for retrograde transport, the IFT dynein components are found at high concentration at the flagellar base but fail to penetrate the flagellar compartment. We propose a model by which the IFT dynein particle is assembled in the cytoplasm, reaches the base of the flagellum, and associates with the IFT machinery in a manner dependent on the IFT-A complex.


2004 ◽  
Vol 164 (6) ◽  
pp. 811-817 ◽  
Author(s):  
Carlo Iomini ◽  
Karla Tejada ◽  
Wenjun Mo ◽  
Heikki Vaananen ◽  
Gianni Piperno

We identified primary cilia and centrosomes in cultured human umbilical vein endothelial cells (HUVEC) by antibodies to acetyl-α-tubulin and capillary morphogenesis gene-1 product (CMG-1), a human homologue of the intraflagellar transport (IFT) protein IFT-71 in Chlamydomonas. CMG-1 was present in particles along primary cilia of HUVEC at interphase and around the oldest basal body/centriole at interphase and mitosis. To study the response of primary cilia and centrosomes to mechanical stimuli, we exposed cultured HUVEC to laminar shear stress (LSS). Under LSS, all primary cilia disassembled, and centrosomes were deprived of CMG-1. We conclude that the exposure to LSS ends the IFT in cultured endothelial cells.


2019 ◽  
Vol 67 (10) ◽  
pp. 723-734
Author(s):  
Chenyang Zhang ◽  
Shuai Zhang ◽  
Yao Sun

Primary cilia, hair-like organelles projecting from the surface of cells, are critical for sensing extracellular stimuli and transmitting molecular signals that regulate cell functions. During bone development, cell cilia are found in several types of cells, but their roles require further investigation. Intraflagellar transport (IFT) is essential for the formation and maintenance of most eukaryotic cilia. IFT140 is a core protein of the IFT-A complex. Mutations in IFT140 have been associated with cases of skeletal ciliopathies. In this study, we examined the expression of IFT140 during bone development. The results showed that, compared with many soft tissues, Ift140 (mRNA level) was highly expressed in bone. Moreover, its expression level was downregulated in the long bones of murine osteoporosis models. At the histological level, IFT140 was characteristically expressed in osteoblasts and chondrocytes at representative stages of bone development, and its expression level in these two types of cells was observed in two waves. These findings suggest that IFT140 may play an important role in the process of chondrogenic and osteogenic differentiation during bone development.


2020 ◽  
Vol 318 (5) ◽  
pp. F1306-F1312
Author(s):  
Miran Yoo ◽  
Laura M. C. Barisoni ◽  
Kyung Lee ◽  
G. Luca Gusella

Defects in the function of primary cilia are commonly associated with the development of renal cysts. On the other hand, the intact cilium appears to contribute a cystogenic signal whose effectors remain unclear. As integrin-β1 is required for the cystogenesis caused by the deletion of the polycystin 1 gene, we asked whether it would be similarly important in the cystogenetic process caused by other ciliary defects. We addressed this question by investigating the effect of integrin-β1 deletion in a ciliopathy genetic model in which the Ift88 gene, a component of complex B of intraflagellar transport that is required for the proper assembly of cilia, is specifically ablated in principal cells of the collecting ducts. We showed that the renal cystogenesis caused by loss of Ift88 is prevented when integrin-β1 is simultaneously depleted. In parallel, pathogenetic manifestations of the disease, such as increased inflammatory infiltrate and fibrosis, were also significantly reduced. Overall, our data indicate that integrin-β1 is also required for the renal cystogenesis caused by ciliary defects and point to integrin-β1-controlled pathways as common drivers of the disease and as possible targets to interfere with the cystogenesis caused by ciliary defects.


Sign in / Sign up

Export Citation Format

Share Document