scholarly journals Methods for chair restraint and training of the common marmoset on oculomotor tasks

2017 ◽  
Author(s):  
Kevin D. Johnston ◽  
Kevin Barker ◽  
Lauren Schaeffer ◽  
David Schaeffer ◽  
Stefan Everling

ABSTRACTThe oculomotor system is the most thoroughly understood sensorimotor system in the brain, due in large part to electrophysiological studies carried out in macaque monkeys trained to perform ocuolomotor tasks. A disadvantage of the macaque model is that many cortical oculomotor areas of interest lie within sulci, making high-density array and laminar recordings impractical. Further, many techniques of molecular biology developed in rodents, such as transgenic animals and optogenetic manipulation of neuronal subtypes, are limited in this species. The common marmoset (Callithrix jacchus) may potentially bridge the gap between systems neuroscience in macaques and molecular techniques, and additionally possesses a smooth cortex allowing easy access to frontoparietal oculomotor areas. To date, techniques for restraint and training of these animals to perform oculomotor tasks remain in an early stage of development. Here we provide details of a custom-designed chair for restraint of marmosets, a combination head restraint/recording chamber providing stability suitable for eye movement and neural recordings, and a training protocol for oculomotor tasks. As proof-of-principle, we report the results of a psychophysical study in marmosets trained to perform a saccade task using these methods, showing that, as in rhesus and humans, marmosets exhibit a “gap effect” – a decrease in reaction time when the fixation stimulus is removed prior to the onset of a visual saccade target. These results provide evidence that the common marmoset is a suitable model for neurophysiogical investigations of oculomotor control.NEW AND NOTEWORTHYThe ability to carry out neuronal recordings in behaving primates has provided a wealth of information regarding the neural circuits underlying the control of eye movements. Such studies require restraint of the animal within a primate chair, head fixation, methods of acclimating the animals to this restraint, and the use of operant conditioning methods for training on oculomotor tasks. In contrast to the macaque model, relatively few studies have reported in detail methods for use in the common marmoset. Here we detail custom-designed equipment and methods by which we have used to successfully train head-restrained marmosets to perform basic oculomotor tasks.

2018 ◽  
Vol 119 (5) ◽  
pp. 1636-1646 ◽  
Author(s):  
Kevin D. Johnston ◽  
Kevin Barker ◽  
Lauren Schaeffer ◽  
David Schaeffer ◽  
Stefan Everling

The oculomotor system is the most thoroughly understood sensorimotor system in the brain, due in large part to electrophysiological studies carried out in macaque monkeys trained to perform oculomotor tasks. A disadvantage of the macaque model is that many cortical oculomotor areas of interest lie within sulci, making high-density array and laminar recordings impractical. Many techniques of molecular biology developed in rodents, such as optogenetic manipulation of neuronal subtypes, are also limited in this species. The common marmoset ( Callithrix jacchus) possesses a smooth cortex, allowing easy access to frontoparietal oculomotor areas, and may bridge the gap between systems neuroscience in macaques and molecular techniques. Techniques for restraint, training, and neural recording in these animals have been well developed in auditory neuroscience. Those for oculomotor neuroscience, however, remain at a relatively early stage. In this article we provide details of a custom-designed restraint chair for marmosets, a combination head restraint/recording chamber allowing access to cortical oculomotor areas and providing stability suitable for eye movement and neural recordings, as well as a training protocol for oculomotor tasks. We additionally report the results of a psychophysical study in marmosets trained to perform a saccade task using these methods, showing that, as in rhesus and humans, marmosets exhibit a “gap effect,” a decrease in reaction time when the fixation stimulus is removed before the onset of a visual saccade target. These results are the first evidence of this effect in marmosets and support the common marmoset model for neurophysiological investigations of oculomotor control. NEW & NOTEWORTHY The ability to carry out neuronal recordings in behaving primates has provided a wealth of information regarding the neural circuits underlying the control of eye movements. Such studies require restraint of the animal within a primate chair, head fixation, methods of acclimating the animals to this restraint, and the use of operant conditioning methods for training on oculomotor tasks. In contrast to the macaque model, relatively few studies have reported in detail methods for use in the common marmoset. In this report we detail custom-designed equipment and methods by which we have used to successfully train head-restrained marmosets to perform basic oculomotor tasks.


2019 ◽  
Vol 122 (4) ◽  
pp. 1765-1776 ◽  
Author(s):  
Maryam Ghahremani ◽  
Kevin D. Johnston ◽  
Liya Ma ◽  
Lauren K. Hayrynen ◽  
Stefan Everling

The common marmoset ( Callithrix jacchus) is a small-bodied New World primate increasing in prominence as a model animal for neuroscience research. The lissencephalic cortex of this primate species provides substantial advantages for the application of electrophysiological techniques such as high-density and laminar recordings, which have the capacity to advance our understanding of local and laminar cortical circuits and their roles in cognitive and motor functions. This is particularly the case with respect to the oculomotor system, as critical cortical areas of this network such as the frontal eye fields (FEF) and lateral intraparietal area (LIP) lie deep within sulci in macaques. Studies of cytoarchitecture and connectivity have established putative homologies between cortical oculomotor fields in marmoset and macaque, but physiological investigations of these areas, particularly in awake marmosets, have yet to be carried out. Here we addressed this gap by probing the function of posterior parietal cortex of the common marmoset with electrical microstimulation. We implanted two animals with 32-channel Utah arrays at the location of the putative area LIP and applied microstimulation while they viewed a video display and made untrained eye movements. Similar to previous studies in macaques, stimulation evoked fixed-vector and goal-directed saccades, staircase saccades, and eyeblinks. These data demonstrate that area LIP of the marmoset plays a role in the regulation of eye movements, provide additional evidence that this area is homologous with that of the macaque, and further establish the marmoset as a valuable model for neurophysiological investigations of oculomotor and cognitive control. NEW & NOTEWORTHY The macaque monkey has been the preeminent model for investigations of oculomotor control, but studies of cortical areas are limited, as many of these areas are buried within sulci in this species. Here we applied electrical microstimulation to the putative area LIP of the lissencephalic cortex of awake marmosets. Similar to the macaque, microstimulation evoked contralateral saccades from this area, supporting the marmoset as a valuable model for studies of oculomotor control.


Author(s):  
Michelle Nelson ◽  
Francisco J. Salguero ◽  
Laura Hunter ◽  
Timothy P. Atkins

Common marmosets (Callithrix jacchus) were shown to be susceptible to inhalational infection with Coxiella burnetii, in a dose-dependent manner, producing a disease similar to human Q fever, characterized by a resolving febrile response. Illness was also associated with weight loss, liver enzyme dysfunction, characteristic cellular activation, circulating INF-γ and bacteraemia. Viable C. burnetii was recovered from various tissues during disease and from 75% of the animal’s lungs on 28 days post challenge, when there were no overt clinical features of disease but there was histological evidence of macrophage and lymphocyte infiltration into the lung resulting in granulomatous alveolitis. Taken together, these features of disease progression, physiology and bacterial spread appear to be consistent with human disease and therefore the common marmoset can be considered as a suitable model for studies on the pathogenesis or the development of medical counter measures of inhalational Q fever.


Author(s):  
Joanita F. D’Souza ◽  
Nicholas S. C. Price ◽  
Maureen A. Hagan

AbstractThe technology, methodology and models used by visual neuroscientists have provided great insights into the structure and function of individual brain areas. However, complex cognitive functions arise in the brain due to networks comprising multiple interacting cortical areas that are wired together with precise anatomical connections. A prime example of this phenomenon is the frontal–parietal network and two key regions within it: the frontal eye fields (FEF) and lateral intraparietal area (area LIP). Activity in these cortical areas has independently been tied to oculomotor control, motor preparation, visual attention and decision-making. Strong, bidirectional anatomical connections have also been traced between FEF and area LIP, suggesting that the aforementioned visual functions depend on these inter-area interactions. However, advancements in our knowledge about the interactions between area LIP and FEF are limited with the main animal model, the rhesus macaque, because these key regions are buried in the sulci of the brain. In this review, we propose that the common marmoset is the ideal model for investigating how anatomical connections give rise to functionally-complex cognitive visual behaviours, such as those modulated by the frontal–parietal network, because of the homology of their cortical networks with humans and macaques, amenability to transgenic technology, and rich behavioural repertoire. Furthermore, the lissencephalic structure of the marmoset brain enables application of powerful techniques, such as array-based electrophysiology and optogenetics, which are critical to bridge the gaps in our knowledge about structure and function in the brain.


2019 ◽  
Author(s):  
Maryam Ghahremani ◽  
Kevin D. Johnston ◽  
Liya Ma ◽  
Lauren K. Hayrynen ◽  
Stefan Everling

AbstractThe common marmoset (Callithrix jacchus) is a small-bodied New World primate, increasing in prominence as a model animal for neuroscience research. The lissencephalic cortex of this primate species provides substantial advantages for the application of electrophysiological techniques such as high-density and laminar recordings, which have the capacity to advance our understanding of local and laminar cortical circuits and their roles in cognitive and motor functions. This is particularly the case with respect to the oculomotor system, as critical cortical areas of this network such as the frontal eye fields (FEF) and lateral intraparietal area (LIP) lie deep within sulci in macaques. Studies of cytoarchitecture and connectivity have established putative homologies between cortical oculomotor fields in marmoset and macaque, but physiological investigations of these areas, particularly in awake marmosets, have yet to be carried out. Here, we addressed this gap by probing the function of posterior parietal cortex (PPC) of the common marmoset using electrical microstimulation. We implanted two animals with 32-channel Utah arrays at the location of the putative area LIP and applied microstimulation while they viewed a video display and made untrained eye movements. Similar to previous studies in macaques, stimulation evoked fixed-vector and goal-directed saccades, staircase saccades, and eye blinks. These data demonstrate that area LIP of the marmoset plays a role in the regulation of eye movements, provide additional evidence that this area is homologous with that of the macaque, and further establish the marmoset as valuable model for neurophysiological investigations of oculomotor and cognitive control.New & NoteworthyThe macaque monkey has been the preeminent model for investigations of oculomotor control, but studies of cortical areas are limited as many of these areas are buried within sulci in this species. Here we applied electrical microstimulation to the putative area LIP of the lissencephalic cortex of awake marmosets. Similar to the macaque, microstimulation evoked contralateral saccades from this area, supporting the marmoset as a valuable model for studies of oculomotor control.


Author(s):  
Zhang Lianhong ◽  

The article reveals the features of vocal traditions development in China and Ukraine in the historical context. The stages of vocal traditions development in China and Ukraine are outlined. The essential characteristics of vocal traditions at each stage of development in the studied countries are defined. The comparative analysis of both vocal traditions enabled defining the main differences and the common features in the development of the studied phenomenon. The differences lie in the fact that Ukrainian vocal tradition has been constantly improving, while Chinese – has experienced periods of decline; in China the basis of vocal training is philosophical, while in Ukraine – spiritual. The common features include implementation of foreign experience in the content of vocal education and training of vocalists in various fields – academic and folk, as well as the spread of pop singing.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Francesca Zoratto ◽  
Emma Sinclair ◽  
Arianna Manciocco ◽  
Augusto Vitale ◽  
Giovanni Laviola ◽  
...  

Interest is rising for animal modeling of pathological gambling. Using the operant probabilistic-delivery task (PDT), gambling proneness can be evaluated in laboratory animals. Drawing a comparison with rats, this study evaluated the common marmoset (Callithrix jacchus) using a PDT. By nose- or hand-poking, subjects learnt to prefer a large (LLL, 5-6 pellets) over a small (SS, 1-2 pellets) reward and, subsequently, the probability of occurrence of large-reward delivery was decreased progressively to very low levels (from 100% to 17% and 14%). As probability decreased, subjects showed a great versus little shift in preference from LLL to SS reinforcer. Hence, two distinct subpopulations (“non-gambler” versus “gambler”) were differentiated within each species. A proof of the model validity comes from marmosets’ reaction to reward-delivery omission. Namely, depending on individual temperament (“gambler” versus “non-gambler”), they showed either persistence (i.e., inadequate pokes towards LLL) or restlessness (i.e., inadequate pokes towards SS), respectively. In conclusion, the marmoset could be a suitable model for preclinical gambling studies. Implementation of the PDT to species other than rats may be relevant for determining its external validity/generalizability and improving its face/construct validity.


2020 ◽  
Author(s):  
Igor Grossmann ◽  
Nic M. Weststrate ◽  
Monika Ardelt ◽  
Justin Peter Brienza ◽  
Mengxi Dong ◽  
...  

Interest in wisdom in the cognitive sciences, psychology, and education has been paralleled by conceptual confusions about its nature and assessment. To clarify these issues and promote consensus in the field, wisdom researchers met in Toronto in July of 2019, resolving disputes through discussion. Guided by a survey of scientists who study wisdom-related constructs, we established a common wisdom model, observing that empirical approaches to wisdom converge on the morally-grounded application of metacognition to reasoning and problem-solving. After outlining the function of relevant metacognitive and moral processes, we critically evaluate existing empirical approaches to measurement and offer recommendations for best practices. In the subsequent sections, we use the common wisdom model to selectively review evidence about the role of individual differences for development and manifestation of wisdom, approaches to wisdom development and training, as well as cultural, subcultural, and social-contextual differences. We conclude by discussing wisdom’s conceptual overlap with a host of other constructs and outline unresolved conceptual and methodological challenges.


Sign in / Sign up

Export Citation Format

Share Document