scholarly journals Probing cellular response to topography in three dimensions

2017 ◽  
Author(s):  
Colin D. Paul ◽  
Alex Hruska ◽  
Jack R. Staunton ◽  
Hannah A. Burr ◽  
Kathryn M. Daly ◽  
...  

ABSTRACTBiophysical aspects of in vivo tissue microenvironments include microscale mechanical properties, fibrillar alignment, and architecture or topography of the extracellular matrix (ECM). These aspects act in concert with chemical signals from a myriad of diverse ECM proteins to provide cues that drive cellular responses. Here, we used a bottom-up approach to build fibrillar architecture into 3D amorphous hydrogels using magnetic-field driven assembly of paramagnetic colloidal particles functionalized with three types of human ECM proteins found in vivo. We investigated if cells cultured in matrices comprised of fibrils of the same size and arranged in similar geometries will show similar behavior for each of the ECM proteins tested. We were able to resolve spatial heterogeneities in microscale mechanical properties near aligned fibers that were not observed in bulk tissue mechanics. We then used this platform to examine factors contributing to cell alignment in response to topographical cues in 3D laminin-rich matrices. Multiple human cell lines extended protrusions preferentially in directions parallel or perpendicular to aligned fibers independently of the ECM coating. Focal adhesion proteins, as measured by paxillin localization, were mainly diffuse in the cytoplasm, with few puncta localized at the protrusions. Integrin β1 and fascin regulated protrusion extension but not protrusion alignment. Myosin II inhibition did not reduce observed protrusion length. Instead, cells with reduced myosin II activity generated protrusions in random orientations when cultured in hydrogels with aligned fibers. Similarly, myosin II dependence was observed in vivo, where cells no longer aligned along the abluminal surfaces of blood vessels upon treatment with blebbistatin. These data suggest that myosin II can regulate sensing of topography in 3D engineered matrices for both normal and transformed cells.

2020 ◽  
Vol 129 (5) ◽  
pp. 1011-1023 ◽  
Author(s):  
Ricardo J. Andrade ◽  
Sandro R. Freitas ◽  
François Hug ◽  
Guillaume Le Sant ◽  
Lilian Lacourpaille ◽  
...  

This study demonstrates that the mechanical properties of plantar flexor muscles and sciatic nerve can adapt mechanically to long-term stretching programs. Although interventions targeting muscular or nonmuscular structures are both effective at increasing maximal range of motion, the changes in tissue mechanical properties (stiffness) are specific to the structure being preferentially stretched by each program. We provide the first in vivo evidence that stiffness of peripheral nerves adapts to long-term loading stimuli using appropriate nerve-directed stretching.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2400-2400
Author(s):  
Renata Giardini Rosa ◽  
Juares E. Romero Bianco ◽  
Gabriela Pereira dos Santos ◽  
Stephen D. Waldman ◽  
Joanna Weber ◽  
...  

Abstract Background: The idea of studying bone marrow outside its native environment is attractive and ideal. Due to the many functions of extracellular matrix (ECM), currently there is an interest in creating an environment that mimics the ECM present in the tissue, similar to the microenvironment in vivo. Molds replacing the ECM (scaffolds) have a porous structure and may assist the tissue regeneration by forming a suitable environment for adhesion, migration, proliferation and cellular differentiation. The appropriate ECM is a key factor as ECM proteins are site-specific and provide protein 'footprints' of previous resident cells. Because ECM proteins are among the most conserved proteins, the removal of xenogenic/allogenic cellular contents via decellularization could theoretically produce an essentially minimally immunogenic scaffold with a native intact structure for new tissue regeneration. Thus, the search for a scaffold that could be used to assess the behavior of cells and their interactions with the ECM in vitro/in vivo, and has different niches in its composition is highly desirable. Aims: In recent years, a large number of molecular and cytogenetic abnormalities have been identified in AML, MDS and multiple myeloma, many of these defects can serve as markers for diagnosis/prognosis or as therapeutic targets. However, there are still many unknown molecular factors involved in genetic abnormalities or signaling pathways that contribute to the pathogenesis of the disease. Another very important aspect of these diseases is that they all are related to the mutual interaction of neoplastic cells and the microenvironment of bone marrow. In the absence of an ideal model or even the difficulty in reproduce a native environment, we proposed the characterization of a natural scaffold, from bovine bone marrow, which can be used as a study model, previously patented by our laboratory. Materials and Methods: Bone marrow was decellularized by one or more incubations in an enzymatic digestion solution and polar solvent extractions, comprising an extracellular matrix with well-preserved 3D structure. Scaffolds were analyzed after the decelularization process for potential changes in structure (TEM, SEM, Histological staining, and immunohistochemistry for collagen III, IV, fibronectin) and mechanical properties. To verify if the scaffold would hold and support cell survival and extracellular matrix production, an in vitro study was performed using CD34+ (non-stromal) and HS-5 (stromal) cells. Cell-seeded decellularized scaffolds were cultured for 7-14 days and analyzed for Histological staining. Results: Histology sections (H&E staining), TEM and SEM demonstrated the structure and ultrastructure of the processed matrix and confirmed both cellular extraction and preservation of the macroscopic 3-D architecture of the collagen fibers, blood vessels, and preservation of an organized matrix. Also, the decellularized scaffold was quite comparable to the native tissue in terms of its mechanical properties. Immunohistochemistry of the scaffold showed that the main components of the ECM were preserved. The in vitro experiments of both stromal cells (HS-5) and non-stromal cells (CD34+) demonstrated that they were able to adhere and in the HS-5 case also produce ECM during 7-14 days of culture. In both cases, an increase in cell number was observed and CD34+ overtime formed cluster and with 14 days of culture the cluster formation increased in size. Conclusions: The results demonstrated that the decellularization process was efficient in keeping a 3-D structure and mechanical properties with a well-organized-preserved ECM. In vitro experiments showed that both CD34+ and HS-5 were able to proliferate and adhere in specific sites of the scaffold, suggesting that they were able to recognize their native environment. HS-5 produced ECM indicating that the scaffold worked as an optimal microenvironment. In conclusion, the scaffold could be used as a model, which has the potential to mimic the native microenvironment to enable research/studies of factors that are involved in self-renewal and maintenance of neoplastic cells in bone marrow. Also, this model could be very useful for pharmacological testing of bone marrow in vitro. Disclosures No relevant conflicts of interest to declare.


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1192
Author(s):  
Anida-Maria Băbțan ◽  
Daniela Timuș ◽  
Olga Sorițău ◽  
Bianca Adina Boșca ◽  
Reka Barabas ◽  
...  

Background: SLM (Selective Laser Melting)–manufactured Titanium (Ti) scaffolds have a significant value for bone reconstructions in the oral and maxillofacial surgery field. While their mechanical properties and biocompatibility have been analysed, there is still no adequate information regarding tissue integration. Therefore, the aim of this study is a comprehensive systematic assessment of the essential parameters (porosity, pore dimension, surface treatment, shape) required to provide the long-term performance of Ti SLM medical implants. Materials and methods: A systematic literature search was conducted via electronic databases PubMed, Medline and Cochrane, using a selection of relevant search MeSH terms. The literature review was conducted using the preferred reporting items for systematic reviews and meta-analysis (PRISMA). Results: Within the total of 11 in vitro design studies, 9 in vivo studies, and 4 that had both in vitro and in vivo designs, the results indicated that SLM-generated Ti scaffolds presented no cytotoxicity, their tissue integration being assured by pore dimensions of 400 to 600 µm, high porosity (75–88%), hydroxyapatite or SiO2–TiO2 coating, and bioactive treatment. The shape of the scaffold did not seem to have significant importance. Conclusions: The SLM technique used to fabricate the implants offers exceptional control over the structure of the base. It is anticipated that with this technique, and a better understanding of the physical interaction between the scaffold and bone tissue, porous bases can be tailored to optimize the graft’s integrative and mechanical properties in order to obtain structures able to sustain osseous tissue on Ti.


2017 ◽  
Vol 17 (08) ◽  
pp. 1730003
Author(s):  
H. GHAZIZADEH ◽  
S. ARAVAMUDHAN

The focus of this paper is to describe the mechanism and behavior of two-dimensional in vitro cell stretch platforms, as well as discussing designs for the evaluation of mechanical properties of cells. It is extremely important to understand the cellular response to extrinsic mechanical forces as living biological system is constantly subjected to mechanical forces in vivo. In addition, this mechanistic understanding of cellular response will provide valuable information towards the design and fabrication of bioengineered tissues and organs, which are expected to replace and/or aid bodily functions. This paper will primarily focus on the development, advantages and limitations of two-dimensional cell stretch platforms.


2020 ◽  
Author(s):  
Shahaf Armon ◽  
Matthew S. Bull ◽  
Avraham Moriel ◽  
Hillel Aharoni ◽  
Manu Prakash

AbstractEpithelial tissues in many contexts can be viewed as soft active solids. Their active nature is manifested in the ability of individual cells within the tissue to contract and/or remodel their mechanical properties in response to various conditions. Little is known about the emergent properties of such materials. Specifically, how an individual cellular activity gives rise to collective spatiotemporal patterns is not fully understood. Recently we reported the observation of ultrafast contraction pulses in the dorsal epithelium of T.adhaerens in vivo [1] and speculated these propagate via mechanical fields. Other accumulating evidence suggest mechanics is involved in similar contractile patterns in embryonic development in vivo and in cellular monolayers in vitro. Here we show that a widespread cellular response – activation of contraction in response to stretch – is sufficient to give rise to nonlinear propagating contraction pulses. Using a minimal numerical model and theoretical considerations we show how such mechanical pulses emerge and propagate, spontaneously or in response to external stretch. The model – whose mathematical structure resembles that of reaction-diffusion systems – explains observed phenomena in T. adhaerens (e.g. excitable or spontaneous pulses, pulse interaction) and predicts other phenomena (e.g. symmetric strain profile, “spike trains”). Finally, we show that in response to external tension, such an active two-dimensional sheet lowers and dynamically distributes the strains across its surface, hence facilitating tissue resistance to rupture. Adding a cellular softening-threshold further enhances the tissue resistance to rupture at cell-cell junctions. As cohesion is at the heart of epithelial physiology, our model may be relevant to many other epithelial systems, even if manifested at different time/length scales.SignificanceOur work demonstrates that many observed dynamical phenomena in epithelial tissues can be explained merely by mechanical cell-cell interactions, and do not require chemical diffusion or transport between cells (though chemical activity may participate in relevant intracellular processes). Specifically, we show that single cell extension-induced-contraction (EIC) is sufficient to generate propagating contraction pulses, which also increase the tissue’s resistance to rupture, an essential function of epithelia. Our results may shed light on how epithelial tissues function under challenging physiological conditions, e.g. in lung, gut, vasculature and other biomedical contexts. Our results may also be relevant in the study of early evolution of multicellularity and the nervous-muscular systems. Finally, the work offers guidelines for designing soft synthetic solids with improved mechanical properties.


Biomolecules ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1208
Author(s):  
Laura P. Frazão ◽  
Joana Vieira de Castro ◽  
Cristina Nogueira-Silva ◽  
Nuno M. Neves

Although some placenta-derived products are already used for tissue regeneration, the human chorion membrane (HCM) alone has been poorly explored. In fact, just one study uses decellularized HCM (dHCM) with native tissue architecture (i.e., without extracellular matrix (ECM) suspension creation) as a substrate for cell differentiation. The aim of this work is to fully characterize the dHCM for the presence and distribution of cell nuclei, DNA and ECM components. Moreover, mechanical properties, in vitro biological performance and in vivo biocompatibility were also studied. Our results demonstrated that the HCM was successfully decellularized and the main ECM proteins were preserved. The dHCM has two different surfaces, the reticular layer side and the trophoblast side; and is biocompatible both in vitro and in vivo. Importantly, the in vivo experiments demonstrated that on day 28 the dHCM starts to be integrated by the host tissue. Altogether, these results support the hypothesis that dHCM may be used as a biomaterial for different tissue regeneration strategies, particularly when a membrane is needed to separate tissues, organs or other biologic compartments.


2017 ◽  
Author(s):  
Raimund Schlüßler ◽  
Stephanie Möllmert ◽  
Shada Abuhattum ◽  
Gheorghe Cojoc ◽  
Paul Müller ◽  
...  

AbstractThe mechanical properties of biological tissues are increasingly recognized as important factors in developmental and pathological processes. Most existing mechanical measurement techniques either necessitate destruction of the tissue for access or provide insufficient spatial resolution. Here, we show for the first time a systematic application of confocal Brillouin microscopy to quantitatively map the mechanical properties of spinal cord tissues during biologically relevant processes in a contact-free and non-destructive manner. Living zebrafish larvae were mechanically imaged in all anatomical planes, during development and after spinal cord injury. These experiments revealed that Brillouin microscopy is capable of detecting the mechanical properties of distinct anatomical structures without interfering with the animal’s natural development. The Brillouin shift within the spinal cord increased during development and transiently decreased during the repair processes following spinal cord transection. By taking into account the refractive index distribution, we explicitly determined the apparent longitudinal modulus and viscosity of different larval zebrafish tissues. Importantly, mechanical properties differed between tissues in situ and in excised slices. The presented work constitutes the first step towards an in vivo assessment of spinal cord tissue mechanics during regeneration, provides a methodical basis to identify key determinants of mechanical tissue properties and allows to test their relative importance in combination with biochemical and genetic factors during developmental and regenerative processes.


2018 ◽  
Author(s):  
Amsha Proag ◽  
Bruno Monier ◽  
Magali Suzanne

AbstractTissue mechanics play a crucial role in organ development. It relies on cells and extracellular matrix (ECM) mechanical properties, but also on their reciprocal interaction. The relative physical contribution of cells and ECM to morphogenesis is poorly understood. Here, we dissected the mechanics of the envelope of the Drosophila developing leg, an epithelium submitted to a number of mechanical stresses: first stretched, it is then torn apart and withdrawn to free the leg. During stretching, we found that mechanical tension is entirely borne by the ECM at first, then by the cellular monolayer as soon as they detach themselves from one another. Then, each envelope layer is removed by an independent mechanism: while ECM withdraws following local proteolysis, cellular monolayer withdrawal is independent of ECM degradation and driven by an autonomous myosin-II-dependent contraction. These results reveal a physical and functional cell-matrix uncoupling that could timely control tissue dynamics during development.


2021 ◽  
Vol 13 (5) ◽  
pp. 587-610
Author(s):  
Ramona Emig ◽  
Callum M. Zgierski-Johnston ◽  
Viviane Timmermann ◽  
Andrew J. Taberner ◽  
Martyn P. Nash ◽  
...  

AbstractPassive mechanical tissue properties are major determinants of myocardial contraction and relaxation and, thus, shape cardiac function. Tightly regulated, dynamically adapting throughout life, and affecting a host of cellular functions, passive tissue mechanics also contribute to cardiac dysfunction. Development of treatments and early identification of diseases requires better spatio-temporal characterisation of tissue mechanical properties and their underlying mechanisms. With this understanding, key regulators may be identified, providing pathways with potential to control and limit pathological development. Methodologies and models used to assess and mimic tissue mechanical properties are diverse, and available data are in part mutually contradictory. In this review, we define important concepts useful for characterising passive mechanical tissue properties, and compare a variety of in vitro and in vivo techniques that allow one to assess tissue mechanics. We give definitions of key terms, and summarise insight into determinants of myocardial stiffness in situ. We then provide an overview of common experimental models utilised to assess the role of environmental stiffness and composition, and its effects on cardiac cell and tissue function. Finally, promising future directions are outlined.


2019 ◽  
Author(s):  
Sandeep Chakraborty

‘Prime-editing’ proposes to replace traditional programmable nucleases (CRISPR-Cas9) using a catalytically impaired Cas9 (dCas9) connected to a engineered reverse transcriptase, and a guide RNA encoding both the target site and the desired change. With just a ‘nick’ on one strand, it is hypothe- sized, the negative, uncontrollable effects arising from double-strand DNA breaks (DSBs) - translocations, complex proteins, integrations and p53 activation - will be eliminated. However, sequencing data pro- vided (Accid:PRJNA565979) reveal plasmid integration, indicating that DSBs occur. Also, looking at only 16 off-targets is inadequate to assert that Prime-editing is more precise. Integration of plasmid occurs in all three versions (PE1/2/3). Interestingly, dCas9 which is known to be toxic in E. coli and yeast, is shown to have residual endonuclease activity. This also affects studies that use dCas9, like base- editors and de/methylations systems. Previous work using hRad51–Cas9 nickases also show significant integration in on-targets, as well as off-target integration [1]. Thus, we show that cellular response to nicking involves DSBs, and subsequent plasmid/Cas9 integration. This is an unacceptable outcome for any in vivo application in human therapy.


Sign in / Sign up

Export Citation Format

Share Document