scholarly journals Male mice with large inversions or deletions of X-palindrome arms are fertile and express their associated genes post-meiosis

2018 ◽  
Author(s):  
Alyssa N. Kruger ◽  
Quinn Ellison ◽  
Michele A. Brogley ◽  
Emma R. Gerlinger ◽  
Jacob L. Mueller

AbstractLarge (>10 kb) palindromic sequences are enriched on mammalian sex chromosomes. In mice, these palindromes harbor gene families (≥2 gene copies) expressed exclusively in post-meiotic testicular germ cells, at a time when most single-copy sex-linked genes are transcriptionally repressed. This distinct expression pattern led to the hypothesis that containment within palindrome structures or having ≥2 gene enables post-meiotic gene expression. We tested these two hypotheses by using CRISPR to precisely engineer large (10’s of kb) inversions and deletions of X chromosome palindrome arms for two regions carrying the mouse 4930567H17Rik and Mageb5 gene families. We found that 4930567H17Rik and Mageb5 gene expression is unaffected in mice carrying palindrome arm inversions, suggesting that palindromic structure is not important for mediating palindrome-associated gene expression. We also found that 4930567H17Rik and Mageb5 gene expression is reduced by half in mice carrying palindrome arm deletions, allowing us to test whether palindrome-associated genes are sensitive to reduced expression levels resulting in spermatogenic defects. Male mice carrying palindrome arm deletions of 4930567H17Rik or Mageb5, however, are fertile, have normal testis histology, and show no aberrations in spermatogenic cell population frequencies via FACS quantification. Together, these findings suggest that large palindromic structures on the sex chromosomes are not necessary for their associated genes to evade post-meiotic transcriptional repression and that these genes are not sensitive to reduced expression levels. Large sex chromosome palindromes may thus be important for other reasons, such as the long-term evolutionary stability of their associated gene families.


2012 ◽  
Vol 2012 ◽  
pp. 1-12
Author(s):  
Michael B. Wells ◽  
Györgyi Csankovszki ◽  
Laura M. Custer

Dosage compensation balances gene expression levels between the sex chromosomes and autosomes and sex-chromosome-linked gene expression levels between the sexes. Different dosage compensation strategies evolved in different lineages, but all involve changes in chromatin. This paper discusses our current understanding of how modifications of the histone H4 tail, particularly changes in levels of H4 lysine 16 acetylation and H4 lysine 20 methylation, can be used in different contexts to either modulate gene expression levels twofold or to completely inhibit transcription.



2021 ◽  
Author(s):  
Sarah R Ocanas ◽  
Victor A Ansere ◽  
Kyla B Tooley ◽  
Niran Hadad ◽  
Ana J Chucair-Elliott ◽  
...  

Sex differences in the brain as they relate to health and disease are often overlooked in experimental models. Many neurological disorders, like Alzheimer's disease (AD), multiple sclerosis (MS), and autism, differ in prevalence between males and females. Sex differences originate either from differential gene expression on sex chromosomes or from hormonal differences, either directly or indirectly. To disentangle the relative contributions of genetic sex (XX v. XY) and gonadal sex (ovaries v. testes) to the regulation of hippocampal sex effects, we use the "sex-reversal" Four Core Genotype (FCG) mouse model which uncouples sex chromosome complement from gonadal sex. Transcriptomic and epigenomic analyses of hippocampal RNA and DNA from ~12 month old FCG mice, reveals differential regulatory effects of sex chromosome content and gonadal sex on X- versus autosome-encoded gene expression and DNA modification patterns. Gene expression and DNA methylation patterns on the X chromosome were driven primarily by sex chromosome content, not gonadal sex. The majority of DNA methylation changes involved hypermethylation in the XX genotypes (as compared to XY) in the CpG context, with the largest differences in CpG islands, promoters, and CTCF binding sites. Autosomal gene expression and DNA modifications demonstrated regulation by sex chromosome complement and gonadal sex. These data demonstrate the importance of sex chromosomes themselves, independent of hormonal status, in regulating hippocampal sex effects. Future studies will need to further interrogate specific CNS cell types, identify the mechanisms by which sex chromosome regulate autosomes, and differentiate organizational from activational hormonal effects.



2020 ◽  
Vol 27 (7) ◽  
pp. 614-622
Author(s):  
Ahmet Savcı ◽  
Enver Fehim Koçpınar ◽  
Harun Budak ◽  
Mehmet Çiftci ◽  
Melda Şişecioğlu

Background: Free radicals lead to destruction in various organs of the organism. The improper use of antibiotics increases the formation of free radicals and causes oxidative stress. Objective: In this study, it was aimed to determine the effects of gentamicin, amoxicillin, and cefazolin antibiotics on the mouse heart. Methods: 20 male mice were divided into 4 groups (1st control, 2nd amoxicillin, 3rd cefazolin, and 4th gentamicin groups). The mice in the experimental groups were administered antibiotics intraperitoneally at a dose of 100 mg / kg for 6 days. The control group received normal saline in the same way. The gene expression levels and enzyme activities of SOD, CAT, GPx, GR, GST, and G6PD antioxidant enzymes were investigated. Results : GSH levels decreased in both the amoxicillin and cefazolin groups, while GR, CAT, and SOD enzyme activities increased. In the amoxicillin group, Gr, Gst, Cat, and Sod gene expression levels increased. Conclusion: As a result, it was concluded that amoxicillin and cefazolin caused oxidative stress in the heart, however, gentamicin did not cause any effects.



Reproduction ◽  
2008 ◽  
Vol 135 (2) ◽  
pp. 241-252 ◽  
Author(s):  
Michelle Alton ◽  
Mau Pan Lau ◽  
Michele Villemure ◽  
Teruko Taketo

Sexual differentiation of the germ cells follows gonadal differentiation, which is determined by the presence or the absence of the Y-chromosome. Consequently, oogenesis and spermatogenesis take place in the germ cells with XX and XY sex chromosomal compositions respectively. It is unclear how sexual dimorphic regulation of meiosis is associated with the sex-chromosomal composition. In the present study, we examined the behavior of the sex chromosomes in the oocytes of the B6.YTIRsex-reversed female mouse, in comparison with XO and XX females. As the sex chromosomes fail to pair in both XY and XO oocytes during meiotic prophase, we anticipated that the pairing failure may lead to excessive oocyte loss. However, the total number of germ cells, identified by immunolabeling of germ cell nuclear antigen 1 (GCNA1), did not differ between XY and XX ovaries or XO and XX ovaries up to the day of delivery. The progression of meiotic prophase, assessed by immunolabeling of synaptonemal complex components, was also similar between the two genotypes of ovaries. These observations suggest that the failure in sex-chromosome pairing is not sufficient to cause oocyte loss. On the other hand, labeling of phosphorylated histone γH2AX, known to be associated with asynapsis and transcriptional repression, was seen over the X-chromosome but not over the Y-chromosome in the majority of XY oocytes at the pachytene stage. For comparison, γH2AX labeling was seen only in the minority of XX oocytes at the same stage. We speculate that the transcriptional activity of sex chromosomes in the XY oocyte may be incompatible with ooplasmic maturation.



2007 ◽  
Vol 2007 ◽  
pp. 1-8 ◽  
Author(s):  
Rami Stiglec ◽  
Matthias Kohn ◽  
James Fong ◽  
Tariq Ezaz ◽  
Horst Hameister ◽  
...  

It has been suggested that there are special evolutionary forces that act on sex chromosomes. Hemizygosity of the X chromosome in male mammals has led to selection for male-advantage genes, and against genes posing extreme risks of tumor development. A similar bias against cancer genes should also apply to the Z chromosome that is present as a single copy in female birds. Using comparative database analysis, we found that there was no significant underrepresentation of cancer genes on the chicken Z, nor on the Z-orthologous regions of human chromosomes 5 and 9. This result does not support the hypothesis that genes involved in cancer are selected against on the sex chromosomes.



2021 ◽  
Author(s):  
Michael John O'Neill ◽  
Natali Sobel Naveh ◽  
Robert Foley ◽  
Katelyn DeNegre ◽  
Tristan Evans ◽  
...  

In mammals, the X and Y chromosomes share only small regions of homology called pseudo-autosomal regions (PAR) where pairing and recombination in spermatocytes can occur. Consequently, the sex chromosomes remain largely unsynapsed during meiosis I and are sequestered in a nuclear compartment known as the XY body where they are transcriptionally silenced in a process called meiotic sex chromosome inactivation (MSCI). MSCI mirrors meiotic silencing of unpaired chromatin (MSUC), the sequestration and transcriptional repression of unpaired DNA observed widely in eukaryotes. MSCI is initiated by the assembly of the axial elements of the synaptonemal complex (SC) comprising the structural proteins SYCP2 and SYCP3 followed by the ordered recruitment of DNA Damage Response (DDR) factors to effect gene silencing. However, the precise mechanism of how unsynapsed chromatin is detected in meiocytes is poorly understood. The sex chromosomes in eutherian mammals harbor multiple clusters of SYCP3-like amplicons comprising the Xlr gene family, only a handful of which have been functionally studied. We used a shRNA-transgenic mouse model to create a deficiency in the testis-expressed multicopy Xlr3 genes to investigate their role in spermatogenesis. Here we show that knockdown of Xlr3 in mice leads to spermatogenic defects and a skewed sex ratio that can be traced to MSCI breakdown. Spermatocytes deficient in XLR3 form the XY body and the SC axial elements therein, but are compromised in their ability to recruit DDR components to the XY body.



2018 ◽  
Author(s):  
George Sandler ◽  
Felix E.G. Beaudry ◽  
Spencer C.H. Barrett ◽  
Stephen I. Wright

AbstractThe evolution of sex chromosomes is usually considered to be driven by sexually antagonistic selection in the diploid phase. However, selection during the haploid gametic phase of the lifecycle has recently received theoretical attention as possibly playing a central role in sex chromosome evolution, especially in plants where gene expression in the haploid phase is extensive. In particular, male-specific haploid selection might favour the linkage of pollen beneficial alleles to male sex determining regions on incipient Y chromosomes. This linkage might then allow such alleles to further specialise for the haploid phase. Purifying haploid selection is also expected to slow the degeneration of Y-linked genes expressed in the haploid phase. Here, we examine the evolution of gene expression in flower buds and pollen of two species of Rumex to test for signatures of haploid selection acting during plant sex chromosome evolution. We find that genes with high ancestral pollen expression bias occur more often on sex chromosomes than autosomes and that genes on the Y chromosome are more likely to become enriched for pollen expression bias. We also find that genes with low expression in pollen are more likely to be lost from the Y chromosome. Our results suggest that sex-specific haploid selection during the gametophytic stage of the lifecycle may be a major contributor to several features of plant sex chromosome evolution.



2019 ◽  
Author(s):  
Abdul Kader Alabdullah ◽  
Philippa Borrill ◽  
Azahara C. Martin ◽  
Ricardo H. Ramirez-Gonzalez ◽  
Keywan Hassani-Pak ◽  
...  

AbstractPolyploidization has played an important role in plant evolution. However, upon polyploidization the process of meiosis must adapt to ensure the proper segregation of increased numbers of chromosomes to produce balanced gametes. It has been suggested that meiotic gene (MG) duplicates return to a single copy following whole genome duplication to stabilise the polyploid genome. Therefore, upon the polyploidization of wheat, a hexaploid species with three related (homeologous) genomes, the stabilization process may have involved rapid changes in content and expression of MGs on homeologous chromosomes (homeologs). To examine this hypothesis, sets of candidate MGs were identified in wheat using co-expression network analysis and orthology informed approaches. In total, 130 RNA-Seq samples from a range of tissues including wheat meiotic anthers were used to define co-expressed modules of genes. Three modules were significantly correlated with meiotic tissue samples but not with other tissue types. These modules were enriched for GO terms related to cell cycle, DNA replication and chromatin modification, and contained orthologs of known MGs. Overall 74.4 % of genes within these meiosis-related modules had three homeologous copies which was similar to other tissue-related modules. Amongst wheat MGs identified by orthology, rather than co-expression, the majority (93.7 %) were either retained in hexaploid wheat at the same number of copies (78.4 %) or increased in copy number (15.3%) compared to ancestral wheat species. Furthermore, genes within meiosis-related modules showed more balanced expression levels between homeologs than genes in non-meiosis-related modules. Taken together our results do not support extensive gene loss nor changes in homeolog expression of MGs upon wheat polyploidization. The construction of the MG co-expression network allowed identification of hub genes and provided key targets for future studies.Author summaryAll flowering plants have undergone a polyploidization event(s) during their evolutionary history. One of the biggest challenges faced by a newly-formed polyploid is meiosis, an essential event for sexual reproduction and fertility. This process must adapt to discriminate between multiple related chromosomes and to ensure their proper segregation to produce fertile gametes. The meiotic mechanisms responsible for the stabilisation of the extant polyploids remain poorly understood except in wheat, where there is now a better understanding of these processes. It has been proposed that meiotic adaptation in established polyploids could involve meiotic gene loss following the event of polyploidization. To test this hypothesis in hexaploid wheat, we have computationally predicted sets of hexaploid wheat meiotic genes based on expression data from different tissue types, including meiotic anther tissue, and orthology informed approaches. We have calculated homeolog expression patterns and number of gene copies for the predicted meiotic genes and compared them with proper control gene sets. Our findings did not support any significant meiotic gene loss upon wheat polyploidization. Furthermore, wheat meiotic genes showed more balanced expression levels between homeologs than non-meiotic genes.



2021 ◽  
Author(s):  
David C.H. Metzger ◽  
Benjamin A. Sandkam ◽  
Iulia Darolti ◽  
Judith E. Mank

ABSTRACTDosage compensation balances gene expression between the sexes in systems with diverged heterogametic sex chromosomes. Theory predicts that dosage compensation should rapidly evolve in parallel with the divergence of sex chromosomes to prevent the deleterious effects of dosage imbalances that occur as a result of sex chromosome divergence. Examples of complete dosage compensation, where gene expression of the entire sex chromosome is compensated, are rare and have only been found in relatively ancient sex chromosome systems. Consequently, very little is known about the evolutionary dynamics of complete dosage compensation systems. We recently found the first example of complete dosage compensation in a fish, Poecilia picta. We also found that the Y chromosome degraded substantially in the common ancestor of P. picta and their close relative Poecilia parae. In this study we find that P. parae also have complete dosage compensation, thus complete dosage compensation likely evolved in the short (∼3.7 my) interval after the split of the ancestor of these two species from P. reticulata, but before they diverged from each other. These data suggest that novel dosage compensation mechanisms can evolve rapidly, thus supporting the longstanding theoretical prediction that such mechanisms arise in parallel with rapidly diverging sex chromosomes.SIGNIFICANCE STATEMENTIn species with XY sex chromosomes, females (XX) have as many copies of X-linked genes compared to males (XY), leading to unbalanced expression between the sexes. Theory predicts that dosage compensation mechanisms should evolve rapidly as X and Y chromosomes diverge, but examples of complete dosage compensation in recently diverged sex chromosomes are scarce, making this theory difficult to test. Across Poeciliid species the X and Y chromosomes have recently diversified. Here we find complete dosage compensation evolved rapidly as the X and Y diverged in the common ancestor of Poecilia parae and P. picta, supporting that novel dosage compensation mechanisms can evolve rapidly in tandem with diverging sex chromosomes. These data confirm longstanding theoretical predictions of sex chromosome evolution.



Sign in / Sign up

Export Citation Format

Share Document