scholarly journals WDR5 regulates epithelial-to-mesenchymal transition in breast cancer cellsviaTGFβ

2018 ◽  
Author(s):  
Punzi Simona ◽  
Balestrieri Chiara ◽  
D’Alesio Carolina ◽  
Bossi Daniela ◽  
Dellino Gaetano Ivan ◽  
...  

AbstractEven if the mortality rate in breast cancer (BC) has recently decreased, development of metastases and drug resistance are still challenges to successful systemic treatment. The epithelial-to-mesenchymal transition (EMT), as well as epigenetic dynamic modifications, plays a pivotal role in invasion, metastasis, and drug resistance. Here, we report that WDR5, the core subunit of histone H3 K4 methyltransferase complexes, is crucial in coordinating EMT and regulating epigenetic changes that drive metastasis. We show that silencing of WDR5 in BC up-regulates an epithelial signature in triple negative and luminal B like patients by transcriptional repression of mesenchymal genes and reduction of the metastatic properties of these cells. Moreover, we demonstrate that this regulation is mediated by inhibition of the TGFβ signaling both at the transcriptional and post-translational level, suggesting an active role of WDR5 in guiding tumor plasticity upon oncogenic insults, regardless of the pathological BC subtypes.We therefore suggest that WDR5 inhibition could be a successful pharmacologic approach to inhibit EMT and sensitize breast cancer cells to chemotherapy.

2019 ◽  
Vol 21 (1) ◽  
Author(s):  
Simona Punzi ◽  
Chiara Balestrieri ◽  
Carolina D’Alesio ◽  
Daniela Bossi ◽  
Gaetano Ivan Dellino ◽  
...  

Abstract Background Development of metastases and drug resistance are still a challenge for a successful systemic treatment in breast cancer (BC) patients. One of the mechanisms that confer metastatic properties to the cell relies in the epithelial-to-mesenchymal transition (EMT). Moreover, both EMT and metastasis are partly modulated through epigenetic mechanisms, by repression or induction of specific related genes. Methods We applied shRNAs and drug targeting approaches in BC cell lines and metastatic patient-derived xenograft (PDX) models to inhibit WDR5, the core subunit of histone H3 K4 methyltransferase complexes, and evaluate its role in metastasis regulation. Result We report that WDR5 is crucial in regulating tumorigenesis and metastasis spreading during BC progression. In particular, WDR5 loss reduces the metastatic properties of the cells by reverting the mesenchymal phenotype of triple negative- and luminal B-derived cells, thus inducing an epithelial trait. We also suggest that this regulation is mediated by TGFβ1, implying a prominent role of WDR5 in driving EMT through TGFβ1 activation. Moreover, such EMT reversion can be induced by drug targeting of WDR5 as well, leading to BC cell sensitization to chemotherapy and enhancement of paclitaxel-dependent effects. Conclusions We suggest that WDR5 inhibition could be a promising pharmacologic approach to reduce cell migration, revert EMT, and block metastasis formation in BC, thus overcoming resistance to standard treatments.


Cancers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1058 ◽  
Author(s):  
Gener ◽  
Rafael ◽  
Seras-Franzoso ◽  
Perez ◽  
Pindado ◽  
...  

Therapeutic resistance seen in aggressive forms of breast cancer remains challenging for current treatments. More than half of the patients suffer from a disease relapse, most of them with distant metastases. Cancer maintenance, resistance to therapy, and metastatic disease seem to be sustained by the presence of cancer stem cells (CSC) within a tumor. The difficulty in targeting this subpopulation derives from their dynamic interconversion process, where CSC can differentiate to non-CSC, which in turn de-differentiate into cells with CSC properties. Using fluorescent CSC models driven by the expression of ALDH1A 1(aldehyde dehydrogenase 1A1), we confirmed this dynamic phenotypic change in MDA-MB-231 breast cancer cells and to identify Serine/Threonine Kinase 2 (AKT2) as an important player in the process. To confirm the central role of AKT2, we silenced AKT2 expression via small interfering RNA and using a chemical inhibitor (CCT128930), in both CSC and non-CSC from different cancer cell lines. Our results revealed that AKT2 inhibition effectively prevents non-CSC reversion through mesenchymal to epithelial transition, reducing invasion and colony formation ability of both, non-CSC and CSC. Further, AKT2 inhibition reduced CSC survival in low attachment conditions. Interestingly, in orthotopic tumor mouse models, high expression levels of AKT2 were detected in circulating tumor cells (CTC). These findings suggest AKT2 as a promising target for future anti-cancer therapies at three important levels: (i) Epithelial-to-mesenchymal transition (EMT) reversion and maintenance of CSC subpopulation in primary tumors, (ii) reduction of CTC and the likelihood of metastatic spread, and (iii) prevention of tumor recurrence through inhibition of CSC tumorigenic and metastatic potential.


2020 ◽  
Vol 21 ◽  
Author(s):  
Anisha Sathyan M. ◽  
Asifa K. P. ◽  
Arunaksharan Narayanankutty

Background:: Breast cancer is the leading form of cancer in women, which is also hormone-dependent. Depend-ing on the receptor expression these cancers are subdivided to different forms; among the receptors, estrogen, progesterone, and Her2 are important. Targeting breast cancer (BC) has been difficult due to their varied nature; however, various Phyto-compounds, especially those are having estrogen-like properties, has been proven to be effective. Objective:: The present review is aimed to provide a detailed description of various Phytocompounds inhibiting breast cancer proliferation and progression; emphasize has been given to the role of phytoestrogens with their molecular mechanism of action. Methods:: The data were collected from reputed databases such as PubMed/Medline, Web of Science, Science Direct, Eu-rekaselect etc. Data on the phytoestrogens were collected using individual names and “phytoestrogens” as keywords. Arti-cles published in journals, which are not indexed by Thomson Reuters (SCI/SCIE/ESCI) are omitted. Results:: Natural products are important drug candidates against multiple forms of breast cancer. In addition to the initiation and proliferation events, these molecules inhibit epithelial to mesenchymal transition (EMT) and metastasis of BC. Phy-toestrogens are an important class of compounds which has known estrogenic potential; studies have also indicated the anticancer potentials of these molecules in cell culture and animal models of BC. Conclusion:: Natural plant compounds, especially, phytoestrogens are promising anti-breast cancer agents by inducing cell cycle arrest, apoptosis and autophagy-mediated cell death. However, more clinical studies are necessary to up these mole-cules are commercial drug molecules.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e12548-e12548
Author(s):  
Lucas Wang ◽  
Brittany Harlow ◽  
Laura Bowers ◽  
Stephen Hursting ◽  
Linda A deGraffenried ◽  
...  

e12548 Background: Almost 40% of women with breast cancer are obese at diagnosis. Obesity is associated with a worse prognosis in triple negative breast cancer (TNBC). Preclinical studies have shown that leptin is an important factor associated with TNBC by promoting cancer stem cell (CSC) enrichment and/or epithelial-to-mesenchymal transition (EMT). Transcription factors SNAIL, TWIST and ZEB are critical components in enhancing EMT in cancer cells. The specific mechanism(s) by leptin regulates SNAIL, TWIST and ZEB expression remain unclear, limiting the development of effective interventions to improve outcomes in obese TNBC patients. Recent studies have demonstrated that miR200c, downstream of leptin receptor signaling, regulates the expression of SNAIL1, TWIST and ZEB. We will test the hypothesis that leptin contributes to obesity-induced EMT/CSC in TNBC through modulation of miR200c. Methods: Ob-R (leptin receptor) expression was suppressed in TNBC MDA-MB-231 and E-Wnt cells using shRNA (Ob-R null). Ob-R and Ob-R null cells were exposed to sera pooled from lean or obese women, as well as lean sera supplemented with leptin, after which expression of SNAIL, TWIST, ZEB and miR200c was measured by qPCR, while activation of the JAK-STAT pathway was assessed by Western blotting. Results: TNBC cells exposed to obese and high leptin conditions demonstrated increased expression of EMT markers compared to levels expressed under lean conditions. The Ob-R WT and null cells were used to determine the specific role of leptin signaling in regulating expression of SNAIL, TWIST and ZEB through miR200c. Conclusions: Both obese and high leptin conditions result in increased expression of EMT regulators, suggesting that effective targeting of this pathway may provide clinical benefit in the obese breast cancer patient. Elucidating the specific mediators of this pathway will guide development of novel and more potent medical therapies.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e13100-e13100
Author(s):  
Shirley Jusino ◽  
Srikumar P. Chellappan ◽  
Harold I. Saavedra

e13100 Background: Triple-negative breast cancer (TNBC) is the most aggressive and poorly prognostic breast cancer subtype, yet there are currently no biological therapies against this subtype. Our laboratory is finding the sources of novel biological targets in TNBC by studying the E2F transcription factors, which are essential for cellular proliferation and maintenance of genomic stability. While the deregulated Rb/E2F pathway signals the epithelial-to-mesenchymal transition (EMT), the underlining mechanism of how E2Fs drive EMT in TNBC remains unknown. We recently published that the E2F transcriptional activators (E2Fs) are overexpressed in the vast majority of TNBC and that their overexpression upregulates mitotic kinases such as TTK, which we have shown to induce EMT and invasion in TNBC cells. We also demonstrated that the E2Fs maintain genomic integrity in part through Shugoshin I (SGO1), which normally controls chromosome cohesion; however, the role of SGO1 in EMT in breast cancer is unknown. Our hypothesis is that E2F3 and SGO1 are highly expressed in TNBC and that their overexpression modulates EMT genes, thus promoting cell invasion. Methods: To test our hypothesis, we conducted siRNA transfection to knockdown E2F3 and SGO1 in MDA-MB-231 and Hs578t, which are TNBC cells. After 48 hours, we evaluated mRNA levels of EMT-related genes after E2F3 or SGO1 depletion using RT-PCR analysis. We also evaluated the effects of SGO1 depletion in protein localization by immunofluorescence. Furthermore, we evaluated the invasive behavior of MDA-MB-231 and Hs578t cells after SGO1 depletion using a Boyden Chamber Assay. Results: Our results demonstrate that E2F3 and SGO1 depletion decrease MMP3 mRNA levels. Moreover, E2F3 and SGO1 depletion restore E-cadherin expression and localization. Furthermore, E2F3 and SGO1 depletion significantly reduce cell invasion in MDA-MB-231 and Hs578t cells. Conclusions: Our results suggest that SGO1 is a promising drug target for breast cancer metastasis since EMT and invasion are essential early steps in breast cancer metastasis and E2F3 is presently undruggable.


2018 ◽  
Vol 39 (2) ◽  
Author(s):  
Huda H. Al-Khalaf ◽  
Hazem Ghebeh ◽  
Rabia Inass ◽  
Abdelilah Aboussekhra

ABSTRACT Aging and stress promote senescence, which has intrinsic tumor suppressor functions and extrinsic tumor promoting properties. Therefore, it is of utmost importance to delineate the effects of senescence inducers on the various types of cells that compose the different organs. We show here that primary normal breast luminal (NBL) cells are more sensitive than their corresponding stromal fibroblasts to proliferative as well as oxidative damage-induced senescence. Like fibroblasts, senescent NBL cells secreted elevated amounts of various cytokines, including interleukin-6 (IL-6) and IL-8, and expressed high levels of p16, p21, and p53, while lamin B1 was downregulated. When senescent, luminal cells activated stromal fibroblasts in an IL-8-dependent manner, through the activation of the STAT3 pathway. These myofibroblasts promoted the epithelial-to-mesenchymal transition and the stemness processes in breast cancer cells in a paracrine manner both in vitro and in a breast cancer animal model. These results show the role of senescent breast luminal cells in promoting the inflammatory/carcinogenic microenvironment through the activation of fibroblasts in an IL-8-dependent manner.


Tumor Biology ◽  
2017 ◽  
Vol 39 (9) ◽  
pp. 101042831771463 ◽  
Author(s):  
Farheen Alam ◽  
Fatima Mezhal ◽  
Hussain EL Hasasna ◽  
Vidhya A Nair ◽  
SR Aravind ◽  
...  

This study aimed to analyze the expression of microRNAs in relation to p53 status in breast cancer cells and to delineate the role of Moesin in this axis. We used three isogenic breast carcinoma cell lines MCF7 (with wild-type p53), 1001 (MCF7 with mutated p53), and MCF7-E6 (MCF7 in which p53 function was disrupted). MicroRNA expression was analyzed using microarray analysis and confirmed by real-time polymerase chain reaction. The 1001 clone with mutant p53 showed 22 upregulated and 25 downregulated microRNAs. The predicted targets of these 47 microRNAs were >700 human genes belonging to interesting functional groups such as stem cell development and maintenance. The most significantly downregulated microRNAs in the p53-mutant cell line were from the miR-200 family. We focused on miR-200c which targets many transcripts involved in epithelial-to-mesenchymal transition including Moesin. We found that Moesin was expressed in 1001 but not in its p53 wild-type parental MCF7 consistent with the observed mesenchymal features in the 1001, such as vimentin positivity, E-cadherin negativity, and ZEB1 positivity in addition to the morphological changes. After Moesin silencing, the p53-mutant cells 1001 reverted from mesenchymal-to-epithelial phenotype and showed subtle reduction in migration and invasion and loss of ZEB1 and SNAIL expression. Interestingly, Moesin silencing restored the 1001 sensitivity to Doxorubicin. These results indicate that loss of miR-200c, as a consequence of p53 mutation, can upregulate Moesin oncogene and thus promote carcinogenesis. Moesin may play a role in metastasis and drug resistance of breast cancer.


2021 ◽  
Vol 10 (4) ◽  
pp. 684
Author(s):  
Lorena Alexandra Lisencu ◽  
Eduard-Alexandru Bonci ◽  
Alexandru Irimie ◽  
Ovidiu Balacescu ◽  
Cosmin Lisencu

Breast cancer is the most frequent form of cancer among women and is one of the leading causes of death. Two routes of the metastatic process have been described: linear and parallel progression. A key factor is represented by circulating tumor cells (CTCs). CTCs detach from the primary tumor or develop from cancer stem cells (CSCs) that undergo epithelial-to-mesenchymal transition (EMT). CTCs migrate to the distant site where the reverse process occurs and a new tumor arises. One of the key problems of metastatic disease is chemoresistance, which leads to treatment failure and, eventually, death. The aim of this review is to present up-to-date data regarding the role of CTCs in chemoresistance in metastatic breast cancer (MBC) patients. A search in Cochrane Library and MEDLINE databases was performed. A total of 125 articles were identified. The results of the final 12 eligible studies revealed that CTCs having stem cell features and those with mesenchymal features are aggressive subtypes of cells that survive chemotherapy, being responsible for chemoresistance and thus for disease progression in MBC patients. The hemodynamic shear stress, alongside dynamic changes among CTCs during the disease, is also an important disease progression factor.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrea Fontana ◽  
Raffaela Barbano ◽  
Elisa Dama ◽  
Barbara Pasculli ◽  
Michelina Rendina ◽  
...  

AbstractWhile the molecular functions of miR-200 family have been deeply investigated, a role for these miRNAs as breast cancer biomarkers remains largely unexplored. In the attempt to clarify this, we profiled the miR-200 family members expression in a large cohort of breast cancer cases with a long follow-up (H-CSS cohort) and in TCGA-BRCA cohort. Overall, miR-200 family was found upregulated in breast tumors with respect to normal breast tissues while downregulated in more aggressive breast cancer molecular subtypes (i.e. Luminal B, HER2 and triple negative), consistently with their function as repressors of the epithelial-to-mesenchymal transition (EMT). In particular miR-141-3p was found differentially expressed in breast cancer molecular subtypes in both H-CSS and TCGA-BRCA cohorts, and the combined analysis of all miR-200 family members demonstrated a slight predictive accuracy on H-CSS cancer specific survival at 12 years (survival c-statistic: 0.646; 95%CI 0.538–0.754).


Sign in / Sign up

Export Citation Format

Share Document