scholarly journals Cortical responses to natural speech reflect probabilistic phonotactics

2018 ◽  
Author(s):  
Giovanni M. Di Liberto ◽  
Daniel Wong ◽  
Gerda Ana Melnik ◽  
Alain de Cheveigné

AbstractHumans comprehend speech despite the various challenges of real-world environments, such as loud noise and mispronunciation. Our auditory system is robust to these thanks to the integration of the upcoming sensory input with prior knowledge and expectations built on language-specific regularities. One such regularity regards the permissible phoneme sequences, which determine the likelihood that a word belongs to a given language (phonotactic probability; “blick” is more likely to be an English word than “bnick”). Previous research suggested that violations of these rules modulate brain evoked responses such as the N400 and the late positive complex. Yet several fundamental questions remain unresolved, especially regarding the neural encoding and integration strategy of phonotactic information. Here, we used linear modelling approaches to assess the influence of phonotactic probabilities on the brain responses to narrative speech measured with non-invasive EEG. We found that the relationship between continuous speech and EEG responses is best described when the speech descriptor includes phonotactic probabilities. This provides us with a methodology to isolate and measure the brain responses to phonotactics using natural speech at the individual subject-level. Furthermore, such low-frequency signals showed the strongest speech-EEG interactions at latencies of 100-400 ms, supporting a pre-lexical role of phonotactic information.Significance StatementSpeech is composed of basic units, called phonemes, whose combinations comply with language-specific regularities determining whether a sequence “sounds” as a plausible word. Our ability to detect irregular combinations requires matching incoming sequences with our internal expectations, a process that supports speech segmentation and learning. However, the neural mechanisms underlying this phenomenon have not yet been established. Here, we examine this in the human brain using narrative speech. We identified a brain signal reflecting the likelihood that a word belongs to the language, which may offer new opportunities to investigate speech perception, learning, development, and impairment. Our data also suggest a pre-lexical role of this phenomenon, thus supporting and extending current mechanistic perspectives.

2021 ◽  
pp. 1-34
Author(s):  
Hyein Jeong ◽  
Emiel van den Hoven ◽  
Sylvain Madec ◽  
Audrey Bürki

Abstract Usage-based theories assume that all aspects of language processing are shaped by the distributional properties of the language. The frequency not only of words but also of larger chunks plays a major role in language processing. These theories predict that the frequency of phrases influences the time needed to prepare these phrases for production and their acoustic duration. By contrast, dominant psycholinguistic models of utterance production predict no such effects. In these models, the system keeps track of the frequency of individual words but not of co-occurrences. This study investigates the extent to which the frequency of phrases impacts naming latencies and acoustic duration with a balanced design, where the same words are recombined to build high- and low-frequency phrases. The brain signal of participants is recorded so as to obtain information on the electrophysiological bases and functional locus of frequency effects. Forty-seven participants named pictures using high- and low-frequency adjective–noun phrases. Naming latencies were shorter for high-frequency than low-frequency phrases. There was no evidence that phrase frequency impacted acoustic duration. The electrophysiological signal differed between high- and low-frequency phrases in time windows that do not overlap with conceptualization or articulation processes. These findings suggest that phrase frequency influences the preparation of phrases for production, irrespective of the lexical properties of the constituents, and that this effect originates at least partly when speakers access and encode linguistic representations. Moreover, this study provides information on how the brain signal recorded during the preparation of utterances changes with the frequency of word combinations.


Cells ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2594
Author(s):  
Yue Ruan ◽  
Tobias Böhmer ◽  
Subao Jiang ◽  
Adrian Gericke

The retina is a part of the central nervous system, a thin multilayer with neuronal lamination, responsible for detecting, preprocessing, and sending visual information to the brain. Many retinal diseases are characterized by hemodynamic perturbations and neurodegeneration leading to vision loss and reduced quality of life. Since catecholamines and respective bindings sites have been characterized in the retina, we systematically reviewed the literature with regard to retinal expression, distribution and function of alpha1 (α1)-, alpha2 (α2)-, and beta (β)-adrenoceptors (ARs). Moreover, we discuss the role of the individual adrenoceptors as targets for the treatment of retinal diseases.


2019 ◽  
Vol 45 (1) ◽  
pp. 62-86 ◽  
Author(s):  
Jonna Brenninkmeijer ◽  
Tanja Schneider ◽  
Steve Woolgar

Over the past decades commercial and academic market(ing) researchers have studied consumers through a range of different methods including surveys, focus groups, or interviews. More recently, some have turned to the growing field of neuroscience to understand consumers. Neuromarketing employs brain imaging, scanning, or other brain measurement technologies to capture consumers’ (brain) responses to marketing stimuli and to circumvent the “problem” of relying on consumers’ self-reports. This paper presents findings of an ethnographic study of neuromarketing research practices in one neuromarketing consultancy. Our access to the minutiae of commercial neuromarketing research provides important insights into how neuromarketers silence the neuromarketing test subject in their experiments and presentations and how they introduce the brain as an unimpeachable witness. This enables us conceptually to reconsider the role of witnesses in the achievement of scientific credibility, as prominently discussed in science and technology studies (STS). Specifically, we probe the role witnesses and silences play in establishing and maintaining credibility in and for “commercial research laboratories.” We propose three themes that have wider relevance for STS researchers and require further attention when studying newly emerging research fields and practices that straddle science and its commercial application.


Motor Control ◽  
2011 ◽  
Vol 15 (1) ◽  
pp. 34-51 ◽  
Author(s):  
Bettina Brendel ◽  
Michael Erb ◽  
Axel Riecker ◽  
Wolfgang Grodd ◽  
Hermann Ackermann ◽  
...  

The present study combines functional magnetic resonance imaging (fMRI) and reaction time (RT) measurements to further elucidate the influence of syllable frequency and complexity on speech motor control processes, i.e., overt reading of pseudowords. Tying in with a recent fMRI-study of our group we focused on the concept of a mental syllabary housing syllable sized ready-made motor plans for high- (HF), but not low-frequency (LF) syllables. The RT-analysis disclosed a frequency effect weakened by a simultaneous complexity effect for HF-syllables. In contrast, the fMRI data revealed no effect of syllable frequency, but point to an impact of syllable structure: Compared with CV-items, syllables with a complex onset (CCV) yielded higher hemodynamic activation in motor “execution” areas (left sensorimotor cortex, right inferior cerebellum), which is at least partially compatible with our previous study. We discuss the role of the syllable in speech motor control.


2008 ◽  
Vol 31 (3) ◽  
pp. 334-335
Author(s):  
Patrick Bateson

AbstractAn attractive feature of Neuroconstructivism, Vol. I: How the Brain Constructs Cognition is its emphasis on the active role of the individual in neural and behavioural development and the importance of the interplay with the environment. Certain aspects of development are omitted, however, such as specializations for the distinctive ecologies of infancy and childhood and the scaffolding-like features of behaviour seen during development. It was also a pity that so little credit was given to many scientists who have contributed to just those aspects of development on which the authors focus.


2021 ◽  
Vol 15 ◽  
Author(s):  
Ulrich Schweizer ◽  
Simon Bohleber ◽  
Wenchao Zhao ◽  
Noelia Fradejas-Villar

Eighteen years ago, unexpected epileptic seizures in Selenop-knockout mice pointed to a potentially novel, possibly underestimated, and previously difficult to study role of selenium (Se) in the mammalian brain. This mouse model was the key to open the field of molecular mechanisms, i.e., to delineate the roles of selenium and individual selenoproteins in the brain, and answer specific questions like: how does Se enter the brain; which processes and which cell types are dependent on selenoproteins; and, what are the individual roles of selenoproteins in the brain? Many of these questions have been answered and much progress is being made to fill remaining gaps. Mouse and human genetics have together boosted the field tremendously, in addition to traditional biochemistry and cell biology. As always, new questions have become apparent or more pressing with solving older questions. We will briefly summarize what we know about selenoproteins in the human brain, glance over to the mouse as a useful model, and then discuss new questions and directions the field might take in the next 18 years.


2022 ◽  
pp. 0271678X2210746
Author(s):  
Ho-Ching (Shawn) Yang ◽  
Ben Inglis ◽  
Thomas M Talavage ◽  
Vidhya Vijayakrishnan Nair ◽  
Jinxia (Fiona) Yao ◽  
...  

It is commonly believed that cerebrospinal fluid (CSF) movement is facilitated by blood vessel wall movements (i.e., hemodynamic oscillations) in the brain. A coherent pattern of low frequency hemodynamic oscillations and CSF movement was recently found during non-rapid eye movement (NREM) sleep via functional MRI. This finding raises other fundamental questions: 1) the explanation of coupling between hemodynamic oscillations and CSF movement from fMRI signals; 2) the existence of the coupling during wakefulness; 3) the direction of CSF movement. In this resting state fMRI study, we proposed a mechanical model to explain the coupling between hemodynamics and CSF movement through the lens of fMRI. Time delays between CSF movement and global hemodynamics were calculated. The observed delays between hemodynamics and CSF movement match those predicted by the model. Moreover, by conducting separate fMRI scans of the brain and neck, we confirmed the low frequency CSF movement at the fourth ventricle is bidirectional. Our finding also demonstrates that CSF movement is facilitated by changes in cerebral blood volume mainly in the low frequency range, even when the individual is awake.


2011 ◽  
Vol 23 (12) ◽  
pp. 3841-3854 ◽  
Author(s):  
Joost Wegman ◽  
Gabriele Janzen

Objects along a route can help us to successfully navigate through our surroundings. Previous neuroimaging research has shown that the parahippocampal gyrus (PHG) distinguishes between objects that were previously encountered at navigationally relevant locations (decision points) and irrelevant locations (nondecision points) during simple object recognition. This study aimed at unraveling how this neural marking of objects relevant for navigation is established during learning and postlearning rest. Twenty-four participants were scanned using fMRI while they were viewing a route through a virtual environment. Eye movements were measured, and brain responses were time-locked to viewing each object. The PHG showed increased responses to decision point objects compared with nondecision point objects during route learning. We compared functional connectivity between the PHG and the rest of the brain in a resting state scan postlearning with such a scan prelearning. Results show that functional connectivity between the PHG and the hippocampus is positively related to participants' self-reported navigational ability. On the other hand, connectivity with the caudate nucleus correlated negatively with navigational ability. These results are in line with a distinction between egocentric and allocentric spatial representations in the caudate nucleus and the hippocampus, respectively. Our results thus suggest a relation between navigational ability and a neural preference for a specific type of spatial representation. Together, these results show that the PHG is immediately involved in the encoding of navigationally relevant object information. Furthermore, they provide insight into the neural correlates of individual differences in spatial ability.


2008 ◽  
Vol 29 (2) ◽  
pp. 213-235 ◽  
Author(s):  
LINDA JARMULOWICZ ◽  
VALENTINA L. TARAN ◽  
SARAH E. HAY

ABSTRACTThis study examined the effects of lexical frequency on children's production of accurate primary stress in words derived with nonneutral English suffixes. Forty-four third-grade children participated in an elicited derived word task in which they produced high-frequency, low-frequency, and nonsense-derived words with stress-changing suffixes (i.e., -tion, -ic, -ity). Derived word frequency affected stress production accuracy; however, the individual suffix also played an important role in stress placement, with -tion productions more accurate than either -ic or -ity productions. For the real words, derived word frequency relative to stem frequency was related to performance. Stress was less accurate on derived words that were much lower in frequency than their stems (e.g., tranquil/tranquility) and more accurate on derived words that approximated or exceeded their stem frequency (e.g., motivate/motivation). In addition to derived word and stem frequency, results are discussed with reference to several phonological characteristics that may also influence stress production accuracy.


Author(s):  
Ratneswary Rasiah ◽  
Sotheeswari Somasundram ◽  
Kelly Pei Leng Tee ◽  
Jason James Turner

This study aims to investigate the impact of assessments and instructional technology on a students' learning experience and the development of their graduate capabilities. In a disruptive employment market where there appears to be a mis-match between employer expectations and the graduate skill-set, the onus has fallen upon education providers to better align the capabilities taught in school with employer and employment market expectations. Using a survey-based approach to collect 118 responses, this research revealed the positive and significant roles played by assessments and technology in enhancing students' learning development of graduate capabilities, with the use of technology identified as the stronger influencer on student learning. The findings of this study are beneficial to educators and policy makers, providing insight into the individual and collective role of assessment(s) and embedding technology into the curriculum as means to address the skills gap which should inform further research into the graduate skills conundrum.


Sign in / Sign up

Export Citation Format

Share Document