scholarly journals Chromatin Condensation Fluctuations Rather than Steady-State Predict Chromatin Accessibility

2018 ◽  
Author(s):  
Nicolas Audugé ◽  
Sergi Padilla-Parra ◽  
Marc Tramier ◽  
Nicolas Borghi ◽  
Maïté Coppey-Moisan

AbstractChromatin accessibility to protein factors is critical for genome activities. Dynamic changes in nucleosomal DNA compaction and higher order chromatin structures are expected to allow specific sites to be accessible to regulatory factors and the transcriptional machinery. However, the dynamic properties of chromatin that regulate its accessibility are poorly understood. Here, we took advantage of the microenvironment sensitivity of the fluorescence lifetime of EGFP-H4 histone incorporated in chromatin to map in the nucleus of live cells the dynamics of chromatin condensation and its direct interaction with a tail acetylation recognition domain (the double bromodomain module of human TAFII250, dBD). We reveal chromatin condensation fluctuations supported by mechanisms fundamentally distinct from that of condensation. Fluctuations are spontaneous, yet their amplitudes are affected by their sub-nuclear localization and by distinct and competing mechanisms dependent on histone acetylation, ATP, and both. Moreover, we show that accessibility of acetylated histone H4 to dBD is not restricted by chromatin condensation nor predicted by acetylation, rather, it is predicted by chromatin condensation fluctuations.SignificanceIn higher eukaryotes, the structure and compaction of chromatin are considered as barriers to genome activities. Epigenetic marks such as post-translational modifications of histones can modify the structure and compaction of chromatin. The accessibility of protein factors to these epigenetic marks is therefore of paramount importance for genome activities. We reveal chromatin condensation fluctuations supported by mechanisms fundamentally distinct from that of condensation itself. We show that accessibility of acetylated histone H4 to double bromodomains is not restricted by chromatin condensation nor predicted by acetylation, rather, it is predicted by chromatin condensation fluctuations.ClassificationBiological Sciences, Cell Biology

2019 ◽  
Vol 47 (12) ◽  
pp. 6184-6194 ◽  
Author(s):  
Nicolas Audugé ◽  
Sergi Padilla-Parra ◽  
Marc Tramier ◽  
Nicolas Borghi ◽  
Maïté Coppey-Moisan

Abstract Chromatin accessibility to protein factors is critical for genome activities. However, the dynamic properties of chromatin higher-order structures that regulate its accessibility are poorly understood. Here, we took advantage of the microenvironment sensitivity of the fluorescence lifetime of EGFP-H4 histone incorporated in chromatin to map in the nucleus of live cells the dynamics of chromatin condensation and its direct interaction with a tail acetylation recognition domain (the double bromodomain module of human TAFII250, dBD). We reveal chromatin condensation fluctuations supported by mechanisms fundamentally distinct from that of condensation. Fluctuations are spontaneous, yet their amplitudes are affected by their sub-nuclear localization and by distinct and competing mechanisms dependent on histone acetylation, ATP and both. Moreover, we show that accessibility of acetylated histone H4 to dBD is not restricted by chromatin condensation nor predicted by acetylation, rather, it is predicted by chromatin condensation fluctuations.


Blood ◽  
2021 ◽  
Author(s):  
Yaomei Wang ◽  
Wei Li ◽  
Vince Schulz ◽  
Huizhi Zhao ◽  
Xiaoli Qu ◽  
...  

Histone deacetylases (HDACs) are a group of enzymes catalyzing the removal of acetyl groups from histone and non-histone proteins. HDACs have been shown to play diverse functions in a wide range of biological processes. However, their roles in mammalian erythropoiesis remain to be fully defined. We show here that of the eleven classic HDAC family members, six of them (HDAC 1,2,3 and HDAC 5,6,7) are expressed in human erythroid cells with HDAC5 most significantly up regulated during terminal erythroid differentiation. Knockdown of HDAC5 by either shRNA or siRNA in human CD34+ cells followed by erythroid cell culture led to increased apoptosis, decreased chromatin condensation, and impaired enucleation of erythroblasts. Biochemical analyses revealed that HDAC5 deficiency resulted in activation of p53 in association with increased acetylation of p53. Furthermore, while acetylation of histone 4 (H4) is decreased during normal terminal erythroid differentiation, HDAC5 deficiency led to increased acetylation of H4 (K12) in late stage erythroblasts. This increased acetylation was accompanied by decreased chromatin condensation, implying a role for H4 (K12) deacetylation in chromatin condensation. ATAC-seq and RNA-seq analyses revealed that HDAC5 knockdown leads to increased chromatin accessibility genome wide and global changes in gene expression. Moreover, pharmacological inhibition of HDAC5 by the inhibitor LMK235 also led to increased H4 acetylation, impaired chromatin condensation and enucleation. Taken together, our findings have uncovered previously unrecognized roles and molecular mechanisms of action for HDAC5 in human erythropoiesis. These results may provide insights into understanding the anemia associated with HDAC inhibitor treatment.


1999 ◽  
Vol 112 (7) ◽  
pp. 1045-1054 ◽  
Author(s):  
P. Collas ◽  
M.R. Liang ◽  
M. Vincent ◽  
P. Alestrom

We have investigated the functional organization of active and silent integrated luciferase transgenes in zebrafish, with the aim of accounting for the variegation of transgene expression in this species. We demonstrate the enrichment of transcriptionally active transgenes in acetylated histone H4 and the dynamic association of the transgenes with splicing factor SC35 and RNA Pol II. Analysis of interphase nuclei and extended chromatin fibers by immunofluorescence and in situ hybridization reveals a co-localization of transgenes with acetylated H4 in luciferase-expressing animals only. Enrichment of expressed transgenes in acetylated H4 is further demonstrated by their co-precipitation from chromatin using anti-acetylated H4 antibodies. Little correlation exists, however, between the level of histone acetylation and the degree of transgene expression. In transgene-expressing zebrafish, most transgenes co-localize with Pol II and SC35, whereas no such association occurs in non-expressing individuals. Inhibition of Pol II abolishes transgene expression and disrupts association of transgenes with SC35, although inactivated transgenes remains enriched in acetylated histones. Exposure of embryos to the histone deacetylation inhibitor TSA induces expression of most silent transgenes. Chromatin containing activated transgenes becomes enriched in acetylated histones and the transgenes recruit SC35 and Pol II. The results demonstrate a correlation between H4 acetylation and transgene activity, and argue that active transgenes dynamically recruit splicing factors and Pol II. The data also suggest that dissociation of splicing factors from transgenes upon Pol II inhibition is not a consequence of changes in H4 acetylation.


2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Claudia Crocini ◽  
Kc Woulfe ◽  
Cierra J Walker ◽  
Christopher D Ozeroff ◽  
leslie A leinwand

Pythons are infrequent feeders that can ingest meals equal to their own body mass. The extreme metabolic response required to digest such large meals is associated with a dramatic increase in the mass of most organs, including the heart. Recently, we have been able to assess functional effects of feeding using isolated python cardiomyocytes and myofibrils, advancing our understanding of extreme cardiac adaptation in python ( Python regius ). Twenty-four hours after feeding, python cardiomyocytes showed prolonged Ca 2+ transients, increased maximal tension and Ca 2+ sensitivity of myofibrils as compared to fasted pythons. Post-prandial positive inotropy was accompanied by enhanced metabolic output via increased mitochondrial ATP production rate and by AMP-dependent kinase (AMPK) activation and phosphofructokinase-2 reduction, suggesting a key role for fatty acid, but not glucose, metabolism after feeding. In addition, 24h post-fed hearts had significantly reduced tissue stiffness and myofibril passive tension. Finally, chromatin condensation was reduced about 30% after feeding in python cardiomyocytes and confirmed by increased histone acetylation, indicating a predominant role for epigenetics in post-prandial adaptation. These results suggest that feeding promotes positive cardiac inotropy in python via a number of coordinated mechanisms to enhance energy production, increase myofibril and tissue compliance, and increase chromatin accessibility. As heart failure is commonly characterized by depressed contractility, compromised energetics, and increased tissue stiffness, assessing post-prandial adaptation in python hearts provides us with powerful insights that could inform the development of therapeutics for human heart diseases.


2019 ◽  
Vol 47 (14) ◽  
pp. 7392-7401 ◽  
Author(s):  
Kathiresan Selvam ◽  
Sheikh Arafatur Rahman ◽  
Shisheng Li

Abstract Nucleotide excision repair (NER) consists of global genomic NER (GG-NER) and transcription coupled NER (TC-NER) subpathways. In eukaryotic cells, genomic DNA is wrapped around histone octamers (an H3–H4 tetramer and two H2A–H2B dimers) to form nucleosomes, which are well known to profoundly inhibit the access of NER proteins. Through unbiased screening of histone H4 residues in the nucleosomal LRS (loss of ribosomal DNA-silencing) domain, we identified 24 mutations that enhance or decrease UV sensitivity of Saccharomyces cerevisiae cells. The histone H4 H75E mutation, which is largely embedded in the nucleosome and interacts with histone H2B, significantly attenuates GG-NER and Rad26-independent TC-NER but does not affect TC-NER in the presence of Rad26. All the other histone H4 mutations, except for T73F and T73Y that mildly attenuate GG-NER, do not substantially affect GG-NER or TC-NER. The attenuation of GG-NER and Rad26-independent TC-NER by the H4H75E mutation is not due to decreased chromatin accessibility, impaired methylation of histone H3 K79 that is at the center of the LRS domain, or lowered expression of NER proteins. Instead, the attenuation is at least in part due to impaired recruitment of Rad4, the key lesion recognition and verification protein, to chromatin following induction of DNA lesions.


2000 ◽  
Vol 20 (19) ◽  
pp. 7088-7098 ◽  
Author(s):  
Alexander J. Kastaniotis ◽  
Thomas A. Mennella ◽  
Christian Konrad ◽  
Ana M. Rodriguez Torres ◽  
Richard S. Zitomer

ABSTRACT The hypoxic genes of Saccharomyces cerevisiae are repressed by a complex consisting of the aerobically expressed, sequence-specific DNA-binding protein Rox1 and the Tup1-Ssn6 general repressors. The regulatory region of one well-studied hypoxic gene,ANB1, is comprised of two operators, OpA and OpB, each of which has two strong Rox1 binding sites, yet OpA represses transcription almost 10 times more effectively than OpB. We show here that this difference is due to the presence of a Mot3 binding site in OpA. Mutations in this site reduced OpA repression to OpB levels, and the addition of a Mot3 binding site to OpB enhanced repression. Deletion of the mot3 gene also resulted in reduced repression of ANB1. Repression of two other hypoxic genes in which Mot3 sites were associated with Rox1 sites was reduced in the deletion strain, but other hypoxic genes were unaffected. In addition, the mot3Δ mutation caused a partial derepression of the Mig1–Tup1-Ssn6-repressed SUC2 gene, but not the α2–Mcm1–Tup1-Ssn6-repressed STE2 gene. The Mot3 protein was demonstrated to bind to the ANB1 OpA in vitro. Competition experiments indicated that there was no interaction between Rox1 and Mot3, indicating that Mot3 functions either in Tup1-Ssn6 recruitment or directly in repression. A great deal of evidence has accumulated suggesting that the Tup1-Ssn6 complex represses transcription through both nucleosome positioning and a direct interaction with the basal transcriptional machinery. We demonstrate here that under repressed conditions a nucleosome is positioned over the TATA box in the wild-type ANB1promoter. This nucleosome was absent in cells carrying arox1, tup1, or mot3 deletion, all of which cause some degree of derepression. Interestingly, however, this positioned nucleosome was also lost in a cell carrying a deletion of the N-terminal coding region of histone H4, yet ANB1expression remained fully repressed. A similar deletion in the gene for histone H3, which had no effect on repression, had only a minor effect on the positioned nucleosome. These results indicate that the nucleosome phasing on the ANB1 promoter caused by the Rox1–Mot3–Tup1-Ssn6 complex is either completely redundant with a chromatin-independent repression mechanism or, less likely, plays no role in repression at all.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Ute Deichmann

Abstract Epigenetics researchers in developmental, cell, and molecular biology greatly diverge in their understanding and definitions of epigenetics. In contrast, social epigeneticists, e.g., sociologists, scholars of STS, and behavioural scientists, share a focus and definition of epigenetics that is environmentally caused and trans-generationally inherited. This article demonstrates that this emphasis on the environment and on so-called Lamarckian inheritance, in addition to other factors, reflects an interdisciplinary power struggle with genetics, in which epigenetics appears to grant the social sciences a higher epistemic status. Social scientists’ understanding of epigenetics, thus, appears in part to be socially constructed, i.e., the result of extra-scientific factors, such as social processes and the self-interest of the discipline. This article argues that social epigeneticists make far-reaching claims by selecting elements from research labelled epigenetics in biology while ignoring widely confirmed scientific facts in genetics and cell biology, such as the dependence of epigenetic marks on DNA sequence-specific events, or the lack of evidence for the lasting influence of the environment on epigenetic marks or the epigenome. Moreover, they treat as a given crucial questions that are far from resolved, such as what role, if any, DNA methylation plays in the complex biochemical system of regulating gene activity. The article also points out incorrect perceptions and media hypes among biological epigeneticists and calls attention to an apparent bias among scientific journals that prefer papers that promote transgenerational epigenetic inheritance over articles that critique it. The article concludes that while research labelled epigenetics contributes significantly to our knowledge about chromatin and the genome, it does not, as is often claimed, rehabilitate Lamarck or overthrow the fundamental biological principles of gene regulation, which are based on specific regulatory sequences of the genome.


Sign in / Sign up

Export Citation Format

Share Document