scholarly journals The role of UV-B light on small RNA activity during grapevine berry development

2018 ◽  
Author(s):  
Sukumaran Sunitha ◽  
Rodrigo Loyola ◽  
José Antonio Alcalde ◽  
Patricio Arce-Johnson ◽  
José Tomás Matus ◽  
...  

AbstractUV-B regulation of anthocyanin biosynthesis in vegetative and grapevine berry tissues has been extensively described. However, its relation with UV-B-regulated microRNAs (miRNAs) has not been addressed before in this species. We explored by deep sequencing of small RNA libraries the developmental dynamics and UV-B effects on miRNAs and associated phased small interfering RNA (phasi-RNAs)-producing loci abundances inin vitro-grown plantlets, in field-grown berry skins of cv. Cabernet Sauvignon, and low- and high UV-B fluence treatments of greenhouse-grown berries at several time points around veraison. We observed by RNA blotting a differential effect of low-versus high-fluence UV-B on miR828 abundances (an effector of anthocyanins and UV-absorbing polyphenolics) across berry development, and identified other miRNAs that correlated with miR828 dynamics. The functional significance of the observed UV-coordinated miRNA responses to UV was supported by degradome evidences of AGO-programmed slicing of mRNAs. Inverse co-expression of the up-regulated miRNAs miR156, miR482, miR530, and miR828 with cognate target gene expressions in response to high fluence UV-B measured by quantitative real-time PCR. These UV-response relationships were also corroborated by analyzing three published transcriptome datasets (berries subjected to UV-C for 1 hr [at pre-veraison], UV-B for five weeks post-veraison, and five red-skinned varieties across four berry development time points). Based on observed significant changes by UV-B on miRNA and derivative phasi-RNA abundances, we propose a regulatory network model of UV responses impacting anti-oxidant and stress-associated polyphenolic compound biosynthesis. In this model high-fluence UV-B increases miR168 (validated in a UV-B small RNA-derived degradome library to targetARGONAUTE1, which spawns phasi-RNAs) and miR530 (targets a novel Plus-3 domain mRNA), while decreasing miR403 abundances (validated to targetARGONAUTE2), thereby coordinating post-transcriptional gene silencing activities by different AGOs. Up-regulation of miR3627/4376 (validated to target Ca2+-transporting ATPase10 that spawns phasi-RNAs) could facilitate anthocyanin accumulation. miR395 and miR399, induced by sulfur and phosphorus starvation in other species (conditions known to trigger anthocyanin accumulation) respond positively to UV-B radiation and are shown to slice cognate targets in grapevine. miR156/miR535 is shown to targetSQUAMOSA PROMOTER-BINDINGtranscription factor genes that potentially regulate the activities of MYB-bHLH-WD40 complexes and thereby anthocyanin biosynthesis. Increases in MYB-bHLH-WD40 TFs could also contribute to the observed up-regulation of miR828 via the conserved and degradome-validated auto-regulatory loop involving miR828/TAS4abcto regulateMYBA6/A7/A5-MYB113-likelevels and thereby anthocyanin levels. These results and meta-analysis provide a basis for systems approaches to better understand non-coding RNA functions in response to UV.


Plant Disease ◽  
2017 ◽  
Vol 101 (9) ◽  
pp. 1606-1615 ◽  
Author(s):  
Zhen-Hua Cui ◽  
Wen-Lu Bi ◽  
Xin-Yi Hao ◽  
Peng-Min Li ◽  
Ying Duan ◽  
...  

Reddish-purple coloration on the leaf blades and downward rolling of leaf margins are typical symptoms of grapevine leafroll disease (GLD) in red-fruited grapevine cultivars. These typical symptoms are attributed to the expression of genes encoding enzymes for anthocyanins synthesis, and the accumulation of flavonoids in diseased leaves. Drought has been proven to accelerate development of GLD symptoms in virus-infected leaves of grapevine. However, it is not known how drought affects GLD expression nor how anthocyanin biosynthesis in virus-infected leaves is altered. The present study used HPLC to determine the types and levels of anthocyanins, and applied reverse transcription quantitative polymerase chain reaction (RT-qPCR) to analyze the expression of genes encoding enzymes for anthocyanin synthesis. Plantlets of Grapevine leafroll-associated virus 3 (GLRaV-3)-infected Vitis vinifera ‘Cabernet Sauvignon’ were grown in vitro under PEG-induced drought stress. HPLC found no anthocyanin-related peaks in the healthy plantlets with or without PEG-induced stress, while 11 peaks were detected in the infected plantlets with or without PEG-induced drought stress, but the peaks were significantly higher in infected drought-stressed plantlets. Increased accumulation of total anthocyanin compounds was related to the development of GLD symptoms in the infected plantlets under PEG stress. The highest level of up-regulated gene expression was found in GLRaV-3-infected leaves with PEG-induced drought stress. Analyses of variance and correlation of anthocyanin accumulation with related gene expression levels found that GLRaV-3-infection was the key factor in increased anthocyanin accumulation. This accumulation involved the up-regulation of two key genes, MYBA1 and UFGT, and their expression levels were further enhanced by drought stress.



2018 ◽  
Author(s):  
Yi-Cheng Wang ◽  
Jing-Jing Sun ◽  
Yan-Fen Qiu ◽  
Xiao-Jun Gong ◽  
Li Ma ◽  
...  

AbstractAnthocyanins are the key factors controlling the coloration of plant tissues. However, the molecular mechanism underlying the effects of environmental pH on the synthesis of apple anthocyanins is unclear. In this study, we analyzed the anthocyanin contents of apple calli cultured in media at different pHs (5.5, 6.0, and 6.5). The highest anthocyanin content was observed at pH 6.0. Additionally, the moderately acidic conditions up-regulated the expression of MdMYB3 as well as specific anthocyanin biosynthesis structural genes (MdDFR and MdUFGT). Moreover, the anthocyanin content was higher in calli overexpressing MdMYB3 than in the wild-type controls at different pHs. Yeast one-hybrid assay results indicated that MdMYB3 binds to the MdDFR and MdUFGT promoters in vivo. An analysis of the MdDFR and MdUFGT promoters revealed multiple MYB-binding sites. Meanwhile, electrophoretic mobility shift assays confirmed that MdMYB3 binds to the MdDFR and MdUFGT promoters in vitro. Furthermore, GUS promoter activity assays suggested that the MdDFR and MdUFGT promoter activities are enhanced by acidic conditions, and the binding of MdMYB3 may further enhance activity. These results implied that an acid-induced apple MYB transcription factor (MdMYB3) promotes anthocyanin accumulation by up-regulating the expression of MdDFR and MdUFGT under moderately acidic conditions.



Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 384
Author(s):  
Liuwei Qin ◽  
Hui Xie ◽  
Nan Xiang ◽  
Min Wang ◽  
Shouan Han ◽  
...  

As popularly consumed fruit berries, grapes are widely planted and processed into products, such as raisins and wine. In order to identify the influences of different climatic conditions on grape coloring and quality formation, we selected two common varieties of grape berries, ‘Red Globe’ and ‘Xin Yu’, for investigation. Grapes were separately grown in different climates, such as a temperate continental arid climate and a temperate continental desert climate, in Urumqi and Turpan, China, for five developmental stages. As measured, the average daily temperature and light intensity were lower in Urumqi. Urumqi grape berries had a lower brightness value (L*) and a higher red-green value (a*) when compared to Turpan’s. A RT-qPCR analysis revealed higher transcriptions of key genes related to anthocyanin biosynthesis in Urumqi grape berries, which was consistent with the more abundant phenolic substances, especially anthocyanins. The maximum antioxidant activity in vitro and cellular antioxidant activity of grape berries were also observed in Urumqi grape berries. These findings enclosed the influence of climate on anthocyanin accumulation and the antioxidant capacity of grapes, which might enlarge our knowledge on the quality formation of grape berries and might also be helpful for cultivating grapes with higher nutritional value.



2009 ◽  
Vol 2009 ◽  
pp. 1-13 ◽  
Author(s):  
Eric J. Devor ◽  
Lingyan Huang ◽  
Abdusattor Abdukarimov ◽  
Ibrokhim Y. Abdurakhmonov

The “RNA revolution” that started at the end of the 20th century with the discovery of post-transcriptional gene silencing and its mechanism via RNA interference (RNAi) placed tiny 21-24 nucleotide long noncoding RNAs (ncRNAs) in the forefront of biology as one of the most important regulatory elements in a host of physiologic processes. The discovery of new classes of ncRNAs including endogenous small interfering RNAs, microRNAs, and PIWI-interacting RNAs is a hallmark in the understanding of RNA-dependent gene regulation. New generation high-throughput sequencing technologies further accelerated the studies of this “tiny world” and provided their global characterization and validation in many biological systems with sequenced genomes. Nevertheless, for the many “yet-unsequenced” plant genomes, the discovery of small RNA world requires in vitro cloning from purified cellular RNAs. Thus, reproducible methods for in vitro small RNA cloning are of paramount importance and will remain so into the foreseeable future. In this paper, we present a description of existing small RNA cloning methods as well as next-generation sequencing methods that have accelerated this research along with a description of the application of one in vitro cloning method in an initial small RNA survey in the “still unsequenced” allotetraploid cotton genome.



2020 ◽  
Vol 40 (3) ◽  
pp. 413-423
Author(s):  
Shuangyi Zhang ◽  
Yixi Chen ◽  
Lingling Zhao ◽  
Chenqi Li ◽  
Jingyun Yu ◽  
...  

Abstract Anthocyanin pigmentation is an important consumption trait of apple (Malus domestica Borkh.). In this study, we focused on the identification of NAC (NAM, ATAF1/2 and CUC2) proteins involved in the regulation of anthocyanin accumulation in apple flesh. A group of MdNACs was selected for comparison of expression patterns between the white-fleshed cultivar ‘Granny Smith’ and red-fleshed ‘Redlove’. Among them, MdNAC42 was screened, which exhibited a higher expression level in red-fleshed than in white-fleshed fruit, and has a positive correlation with anthocyanin content as fruits ripened. Moreover, overexpression of MdNAC42 in apple calli resulted in the up-regulation of flavonoid pathway genes, including MdCHS, MdCHI, MdF3H, MdDFR, MdANS and MdUFGT, thereby increasing the accumulation of anthocyanins, which confirmed the roles of MdNAC42 in anthocyanin biosynthesis. Notably, MdNAC42 was demonstrated to have an obvious interaction with MdMYB10 either in vitro or in vivo by yeast two-hybrid combined with bimolecular fluorescence complementation, further suggesting that MdNAC42 is an important part of the regulatory network controlling the anthocyanin pigmentation of red-fleshed apples. To the best of our knowledge, this is the first report identifying the MdNAC gene as related to anthocyanin accumulation in red-fleshed apples. This study provides valuable information for improving the regulatory model of anthocyanin biosynthesis in apple fruit.



2019 ◽  
pp. g3.200805.2018 ◽  
Author(s):  
Sukumaran Sunitha ◽  
Rodrigo Loyola ◽  
José Antonio Alcalde ◽  
Patricio Arce-Johnson ◽  
José Tomás Matus ◽  
...  


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Hainan Liu ◽  
Qun Shu ◽  
Kui Lin-Wang ◽  
Andrew C. Allan ◽  
Richard V. Espley ◽  
...  

AbstractSome cultivars of pear (Pyrus L.) show attractive red fruit skin due to anthocyanin accumulation. This pigmentation can be affected by environmental conditions, especially light. To explore the light-induced regulation network for anthocyanin biosynthesis and fruit coloration in pear, small RNA libraries and mRNA libraries from fruit skins of ‘Yunhongyihao’ pear were constructed to compare the difference between bagging and debagging treatments. Analysis of RNA-seq of fruit skins with limited light (bagged) and exposed to light (debagged), showed that PyPIF5 was down-regulated after bag removal. PymiR156a was also differentially expressed between bagged and debagged fruit skins. We found that PyPIF5 negatively regulated PymiR156a expression in bagged fruits by directly binding to the G-box motif in its promoter. In addition, PymiR156a overexpression promoted anthocyanin accumulation in both pear skin and apple calli. We confirmed that PymiR156a mediated the cleavage of PySPL9, and that the target PySPL9 protein could form heterodimers with two key anthocyanin regulators (PyMYB114/PyMYB10). We proposed a new module of PyPIF5-PymiR156a-PySPL9-PyMYB114/MYB10. When the bagged fruits were re-exposed to light, PyPIF5 was down-regulated and its inhibitory effect on PymiR156a was weakened, which leads to degradation of the target PySPL, thus eliminating the blocking effect of PySPL on the formation of the regulatory MYB complexes. Ultimately, this promotes anthocyanin biosynthesis in pear skin.



Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1477
Author(s):  
Asadullah Khan ◽  
Sanaullah Jalil ◽  
Huan Cao ◽  
Yohannes Tsago ◽  
Mustapha Sunusi ◽  
...  

The anthocyanin biosynthesis attracts strong interest due to the potential antioxidant value and as an important morphological marker. However, the underlying mechanism of anthocyanin accumulation in plant tissues is not clearly understood. Here, a rice mutant with a purple color in the leaf blade, named pl6, was developed from wild type (WT), Zhenong 41, with gamma ray treatment. By map-based cloning, the OsPL6 gene was located on the short arm of chromosome 6. The multiple mutations, such as single nucleotide polymorphism (SNP) at −702, −598, −450, an insertion at −119 in the promoter, three SNPs and one 6-bp deletion in the 5′-UTR region, were identified, which could upregulate the expression of OsPL6 to accumulate anthocyanin. Subsequently, the transcript level of structural genes in the anthocyanin biosynthesis pathway, including OsCHS, OsPAL, OsF3H and OsF3′H, was elevated significantly. Histological analysis revealed that the light attenuation feature of anthocyanin has degraded the grana and stroma thylakoids, which resulted in poor photosynthetic efficiency of purple leaves. Despite this, the photoabatement and antioxidative activity of anthocyanin have better equipped the pl6 mutant to minimize the oxidative damage. Moreover, the contents of abscisic acid (ABA) and cytokanin (CK) were elevated along with anthocyanin accumulation in the pl6 mutant. In conclusion, our results demonstrate that activation of OsPL6 could be responsible for the purple coloration in leaves by accumulating excessive anthocyanin and further reveal that anthocyanin acts as a strong antioxidant to scavenge reactive oxygen species (ROS) and thus play an important role in tissue maintenance.



2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Chui Yiu Bamboo Chook ◽  
Francis M. Chen ◽  
Gary Tse ◽  
Fung Ping Leung ◽  
Wing Tak Wong

Abstract Cardiovascular disease is a major cause of mortality in diabetic patients due to the heightened oxidative stress and pro-inflammatory state in vascular tissues. Effective approaches targeting cardiovascular health for diabetic patients are urgently needed. Crocodile blood, an emerging dietary supplement, was suggested to have anti-oxidative and anti-inflammatory effects in vitro, which have yet to be proven in animal models. This study thereby aimed to evaluate whether crocodile blood can protect vascular function in diabetic mice against oxidation and inflammation. Diabetic db/db mice and their counterparts db/m+ mice were treated daily with crocodile blood soluble fraction (CBSF) or vehicle via oral gavage for 4 weeks before their aortae were harvested for endothelium-dependent relaxation (EDR) quantification using wire myograph, which is a well-established functional study for vascular function indication. Organ culture experiments culturing mouse aortae from C57BL/6 J mice with or without IL-1β and CBSF were done to evaluate the direct effect of CBSF on endothelial function. Reactive oxygen species (ROS) levels in mouse aortae were assessed by dihydroethidium (DHE) staining with inflammatory markers in endothelial cells quantified by quantitative polymerase chain reaction (qPCR). CBSF significantly improved deteriorated EDR in db/db diabetic mice through both diet supplementation and direct culture, with suppression of ROS level in mouse aortae. CBSF also maintained EDR and reduced ROS levels in mouse aortae against the presence of pro-inflammatory IL-1β. Under the pro-inflammatory state induced by IL-1β, gene expressions of inflammatory cytokines were downregulated, while the protective transcripts UCP2 and SIRT6 were upregulated in endothelial cells. Our study suggests a novel beneficial effect of crocodile blood on vascular function in diabetic mice and that supplementation of diet with crocodile blood may act as a complementary approach to protect against vascular diseases through anti-oxidation and anti-inflammation in diabetic patients. Graphical abstract



Sign in / Sign up

Export Citation Format

Share Document