scholarly journals Rad51 and Mitotic Function of Mus81 are Essential for Recovery from Low-Dose of Camptothecin in the Absence of the Wrn Exonuclease

2018 ◽  
Author(s):  
Francesca Antonella Aiello ◽  
Anita Palma ◽  
Eva Malacaria ◽  
Li Zheng ◽  
Judith L. Campbell ◽  
...  

ABSTRACTStabilisation of the stalled replication fork is crucial to prevent excessive fork reversal or degradation, which can undermine genome integrity. The WRN protein is a human RecQ helicase that participates in the processing and recovery of perturbed replication forks. WRN is unique among the other human RecQ family members to possess exonuclease activity. However, the biological role of the WRN exonuclease is poorly defined, and little is known about an involvement in the response to perturbed replication. Recently, the WRN exonuclease has been linked to protection of stalled forks from MRE11-dependent degradation in response to clinically-relevant nanomolar doses of the Topoisomerase I inhibitor camptothecin. Alternative processing of perturbed forks has been associated to chemoresistance of BRCA-deficient cancer cells, thus, we used WRN exonuclease-deficiency as a model to investigate the fate of perturbed replication forks undergoing degradation, but in a BRCA wild-type condition. We find that, upon nanomolar doses of camptothecin, loss of WRN exonuclease stimulates fork inactivation and accumulation of parental gaps, which engages RAD51. Such alternative mechanism affects reinforcement of CHK1 phosphorylation and causes persistence of RAD51 during recovery from treatment. Notably, in WRN exonuclease-deficient cells, persistence of RAD51 correlates with elevated mitotic phosphorylation of MUS81 at Serine 87, which is essential to avoid accumulation of mitotic abnormalities. Altogether, these findings indicate that aberrant fork degradation, in the presence of a wild-type RAD51 axis, stimulates RAD51-mediated post-replicative repair and engagement of the MUS81 complex to limit genome instability and cell death.AUTHOR SUMMARYCorrect progression of the molecular machine copying the chromosomes is threatened by multiple causes that induce its delay or arrest. Once the replication machinery is arrested, the cell needs to stabilise it to prevent DNA damage. Many proteins contribute to this task and the Werner’s syndrome protein, WRN, is one of them.Defining what happens to replication machineries when they are blocked is highly relevant. Indeed, destabilised replication machineries may form upon treatment with anticancer drugs and influence the efficacy of some of them in specific genetic backgrounds. We used cells that lack one of the two enzymatic functions of WRN, the exonuclease activity, to investigate the fate of destabilised replication machineries. Our data show that they are handled by a repair pathway normally involved in fixing DNA breaks but, in this case, recruited to deal with regions of the genome that are left unreplicated after their destabilisation. This alternative mechanism involves a protein, RAD51, which tries to copy DNA from the sister chromosome. In so doing, however, RAD51 produces a lot of DNA interlinking that requires upregulation of a complex, called MUS81/EME1, which resolves this interlinking prior cell division and prevents accumulation of mitotic defects and cell death.

2019 ◽  
Vol 47 (13) ◽  
pp. 6796-6810 ◽  
Author(s):  
Francesca Antonella Aiello ◽  
Anita Palma ◽  
Eva Malacaria ◽  
Li Zheng ◽  
Judith L Campbell ◽  
...  

Abstract Stabilization of stalled replication forks prevents excessive fork reversal or degradation, which can undermine genome integrity. The WRN protein is unique among the other human RecQ family members to possess exonuclease activity. However, the biological role of the WRN exonuclease is poorly defined. Recently, the WRN exonuclease has been linked to protection of stalled forks from degradation. Alternative processing of perturbed forks has been associated to chemoresistance of BRCA-deficient cancer cells. Thus, we used WRN exonuclease-deficiency as a model to investigate the fate of perturbed forks undergoing degradation, but in a BRCA wild-type condition. We find that, upon treatment with clinically-relevant nanomolar doses of the Topoisomerase I inhibitor camptothecin, loss of WRN exonuclease stimulates fork inactivation and accumulation of parental gaps, which engages RAD51. Such mechanism affects reinforcement of CHK1 phosphorylation and causes persistence of RAD51 during recovery from treatment. Notably, in WRN exonuclease-deficient cells, persistence of RAD51 correlates with elevated mitotic phosphorylation of MUS81 at Ser87, which is essential to prevent excessive mitotic abnormalities. Altogether, these findings indicate that aberrant fork degradation, in the presence of a wild-type RAD51 axis, stimulates RAD51-mediated post-replicative repair and engagement of the MUS81 complex to limit genome instability and cell death.


2004 ◽  
Vol 24 (6) ◽  
pp. 617-629 ◽  
Author(s):  
Jay C. Leonard ◽  
Ann M. Mullinger ◽  
John Schmidt ◽  
Heather J. Cordell ◽  
Robert T. Johnson

Previously we used the topoisomerase I inhibitor camptothecin (CPT), which kills mainly S-phase cells primarily by inducing double strand breaks (DSBs) in replication forks, to show that ataxia telangiectasia (A-T) fibroblasts are defective in the repair of this particular subclass of DSBs. CPT treated A-T cells reaching G2 have abnormally high levels of chromatid exchanges, viewed as prematurely condensed G2 chromosomes (G2 PCC), compared with normal cells where aberrations are mostly chromatid breaks. Here we show that A-T lymphoblastoid cells established from individuals with different mutations in the ATM gene also exhibit increased levels of chromosomal exchanges in response to CPT, indicating that the replication-associated DSBs are misrepaired in all these cells. From family studies we show that the presence of a single mutated allele in obligate A-T heterozygotes leads to intermediate levels of chromosomal exchanges in CPT-treated lymphoblastoid cells, thus providing a functional and sensitive assay to identify these individuals.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 962
Author(s):  
Maciej Jerzy Bernacki ◽  
Anna Rusaczonek ◽  
Weronika Czarnocka ◽  
Stanisław Karpiński

Salicylic acid (SA) is well known hormonal molecule involved in cell death regulation. In response to a broad range of environmental factors (e.g., high light, UV, pathogens attack), plants accumulate SA, which participates in cell death induction and spread in some foliar cells. LESION SIMULATING DISEASE 1 (LSD1) is one of the best-known cell death regulators in Arabidopsis thaliana. The lsd1 mutant, lacking functional LSD1 protein, accumulates SA and is conditionally susceptible to many biotic and abiotic stresses. In order to get more insight into the role of LSD1-dependent regulation of SA accumulation during cell death, we crossed the lsd1 with the sid2 mutant, caring mutation in ISOCHORISMATE SYNTHASE 1(ICS1) gene and having deregulated SA synthesis, and with plants expressing the bacterial nahG gene and thus decomposing SA to catechol. In response to UV A+B irradiation, the lsd1 mutant exhibited clear cell death phenotype, which was reversed in lsd1/sid2 and lsd1/NahG plants. The expression of PR-genes and the H2O2 content in UV-treated lsd1 were significantly higher when compared with the wild type. In contrast, lsd1/sid2 and lsd1/NahG plants demonstrated comparability with the wild-type level of PR-genes expression and H2O2. Our results demonstrate that SA accumulation is crucial for triggering cell death in lsd1, while the reduction of excessive SA accumulation may lead to a greater tolerance toward abiotic stress.


Genetics ◽  
2000 ◽  
Vol 156 (1) ◽  
pp. 341-350
Author(s):  
Jean T Greenberg ◽  
F Paul Silverman ◽  
Hua Liang

Abstract Salicylic acid (SA) is required for resistance to many diseases in higher plants. SA-dependent cell death and defense-related responses have been correlated with disease resistance. The accelerated cell death 5 mutant of Arabidopsis provides additional genetic evidence that SA regulates cell death and defense-related responses. However, in acd5, these events are uncoupled from disease resistance. acd5 plants are more susceptible to Pseudomonas syringae early in development and show spontaneous SA accumulation, cell death, and defense-related markers later in development. In acd5 plants, cell death and defense-related responses are SA dependent but they do not confer disease resistance. Double mutants with acd5 and nonexpressor of PR1, in which SA signaling is partially blocked, show greatly attenuated cell death, indicating a role for NPR1 in controlling cell death. The hormone ethylene potentiates the effects of SA and is important for disease symptom development in Arabidopsis. Double mutants of acd5 and ethylene insensitive 2, in which ethylene signaling is blocked, show decreased cell death, supporting a role for ethylene in cell death control. We propose that acd5 plants mimic P. syringae-infected wild-type plants and that both SA and ethylene are normally involved in regulating cell death during some susceptible pathogen infections.


Genetics ◽  
2004 ◽  
Vol 166 (4) ◽  
pp. 1631-1640 ◽  
Author(s):  
Janet R Donaldson ◽  
Charmain T Courcelle ◽  
Justin Courcelle

Abstract Ultraviolet light induces DNA lesions that block the progression of the replication machinery. Several models speculate that the resumption of replication following disruption by UV-induced DNA damage requires regression of the nascent DNA or migration of the replication machinery away from the blocking lesion to allow repair or bypass of the lesion to occur. Both RuvAB and RecG catalyze branch migration of three- and four-stranded DNA junctions in vitro and are proposed to catalyze fork regression in vivo. To examine this possibility, we characterized the recovery of DNA synthesis in ruvAB and recG mutants. We found that in the absence of either RecG or RuvAB, arrested replication forks are maintained and DNA synthesis is resumed with kinetics that are similar to those in wild-type cells. The data presented here indicate that RecG- or RuvAB-catalyzed fork regression is not essential for DNA synthesis to resume following arrest by UV-induced DNA damage in vivo.


2004 ◽  
Vol 287 (4) ◽  
pp. H1730-H1739 ◽  
Author(s):  
Ron Zohar ◽  
Baoqian Zhu ◽  
Peter Liu ◽  
Jaro Sodek ◽  
C. A. McCulloch

Reperfusion-induced oxidative injury to the myocardium promotes activation and proliferation of cardiac fibroblasts and repair by scar formation. Osteopontin (OPN) is a proinflammatory cytokine that is upregulated after reperfusion. To determine whether OPN enhances fibroblast survival after exposure to oxidants, cardiac fibroblasts from wild-type (WT) or OPN-null (OPN−/−) mice were treated in vitro with H2O2to model reperfusion injury. Within 1 h, membrane permeability to propidium iodide (PI) was increased from 5 to 60% in OPN−/−cells but was increased to only 20% in WT cells. In contrast, after 1–8 h of treatment with H2O2, the percent of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-stained cells was more than twofold higher in WT than OPN−/−cells. Electron microscopy of WT cells treated with H2O2showed chromatin condensation, nuclear fragmentation, and cytoplasmic and nuclear shrinkage, which are consistent with apoptosis. In contrast, H2O2-treated OPN−/−cardiac fibroblasts exhibited cell and nuclear swelling and membrane disruption that are indicative of cell necrosis. Treatment of OPN−/−and WT cells with a cell-permeable caspase-3 inhibitor reduced the percentage of TUNEL staining by more than fourfold in WT cells but decreased staining in OPN−/−cells by ∼30%. Although the percentage of PI-permeable WT cells was reduced threefold, the percent of PI-permeable OPN−/−cells was not altered. Restoration of OPN expression in OPN−/−fibroblasts reduced the percentage of PI-permeable cells but not TUNEL staining after H2O2treatment. Thus H2O2-induced cell death in OPN-deficient cardiac fibroblasts is mediated by a caspase-3-independent, necrotic pathway. We suggest that the increased expression of OPN in the myocardium after reperfusion may promote fibrosis by protecting cardiac fibroblasts from cell death.


2007 ◽  
Vol 179 (2) ◽  
pp. 255-267 ◽  
Author(s):  
Karthik Jeganathan ◽  
Liviu Malureanu ◽  
Darren J. Baker ◽  
Susan C. Abraham ◽  
Jan M. van Deursen

The physiological role of the mitotic checkpoint protein Bub1 is unknown. To study this role, we generated a series of mutant mice with a gradient of reduced Bub1 expression using wild-type, hypomorphic, and knockout alleles. Bub1 hypomorphic mice are viable, fertile, and overtly normal despite weakened mitotic checkpoint activity and high percentages of aneuploid cells. Bub1 haploinsufficient mice, which have a milder reduction in Bub1 protein than Bub1 hypomorphic mice, also exhibit reduced checkpoint activity and increased aneuploidy, but to a lesser extent. Although cells from Bub1 hypomorphic and haploinsufficient mice have similar rates of chromosome missegregation, cell death after an aberrant separation decreases dramatically with declining Bub1 levels. Importantly, Bub1 hypomorphic mice are highly susceptible to spontaneous tumors, whereas Bub1 haploinsufficient mice are not. These findings demonstrate that loss of Bub1 below a critical threshold drives spontaneous tumorigenesis and suggest that in addition to ensuring proper chromosome segregation, Bub1 is important for mediating cell death when chromosomes missegregate.


2006 ◽  
Vol 21 (1) ◽  
pp. 194-205 ◽  
Author(s):  
Ghanashyam D. Ghadge ◽  
Lijun Wang ◽  
Kamal Sharma ◽  
Anna Liza Monti ◽  
Vytas Bindokas ◽  
...  

Development ◽  
1996 ◽  
Vol 122 (5) ◽  
pp. 1343-1352 ◽  
Author(s):  
L.H. Frank ◽  
C. Rushlow

The amnioserosa is an extraembryonic, epithelial tissue that covers the dorsal side of the Drosophila embryo. The initial development of the amnioserosa is controlled by the dorsoventral patterning genes. Here we show that a group of genes, which we refer to as the U-shaped-group (ush-group), is required for maintenance of the amnioserosa tissue once it has differentiated. Using several molecular markers, we examined amnioserosa development in the ush-group mutants: u-shaped (ush), hindsight (hnt), serpent (srp) and tail-up (tup). Our results show that the amnioserosa in these mutants is specified correctly and begins to differentiate as in wild type. However, following germ-band extension, there is a premature loss of the amnioserosa. We demonstrate that this cell loss is a consequence of programmed cell death (apoptosis) in ush, hnt and srp, but not in tup. We discuss the role of the ush-group genes in maintaining the amnioserosa's viability. We also discuss a possible role for the amnioserosa in germ-band retraction in light of these mutants' unretracted phenotype.


Sign in / Sign up

Export Citation Format

Share Document