scholarly journals A freeze-and-thaw induced-fragment of the microtubule-associated protein Tau in rat brain extracts: implications for the biochemical assessment of neurotoxicity

2018 ◽  
Author(s):  
Israel C. Vasconcelos ◽  
Raquel M. Campos ◽  
Hanna K. Schwaemmle ◽  
Ana P. Masson ◽  
Gustavo D. Ferrari ◽  
...  

ABSTRACTTau is a microtubule-associated protein responsible for controlling the stabilization of microtubules in neurons. Tau function is regulated by phosphorylation. However, in some neurological diseases Tau becomes aberrantly hyperphosphorylated, which contributes to the pathogenesis of neurological diseases, known as tauopathies. Western blotting (WB) has been widely employed to determine Tau levels in neurological disease models. However, Tau quantification by WB should be interpreted with care, as this approach has been recognized as prone to produce artifactual results if not properly performed. In this study, our goal was to evaluate the influence of a freeze-and-thaw cycle, a common procedure preceding WB, to the integrity of Tau in brain homogenates from rats, 3xTg-AD mice and human samples. Homogenates were prepared in ice-cold RIPA buffer supplemented with protease/phosphatase inhibitors. Immediately after centrifugation, an aliquot of the extracts was analyzed via WB to quantify total and phosphorylated Tau levels. The remaining aliquots were stored for at least 2 weeks at either −20°C or −80°C and then subjected to WB. Extracts from rodent brains submitted to freeze-and-thaw presented a ~25 kDa fragment immunoreactive to anti-Tau antibodies. An in-gel digestion followed by mass spectrometry analysis in excised bands revealed this ~25 kDa species corresponds to a Tau fragment. Freeze-and-thaw-induced Tau proteolysis was detected even when extracts were stored at −80°C. This phenomenon was not observed in human samples at any storage condition tested. Based on these findings, we strongly recommend the use of fresh extracts of brain samples in molecular analysis of Tau levels in rodents.

2021 ◽  
Vol 41 (3) ◽  
Author(s):  
Israel C. Vasconcelos ◽  
Raquel M. Campos ◽  
Hanna K. Schwaemmle ◽  
Ana P. Masson ◽  
Gustavo D. Ferrari ◽  
...  

Abstract Tau is a microtubule-associated protein (MAP) responsible for controlling the stabilization of microtubules in neurons. Tau function is regulated by phosphorylation. However, in some neurological diseases Tau becomes aberrantly hyperphosphorylated, which contributes to the pathogenesis of neurological diseases, known as tauopathies. Western blotting (WB) has been widely employed to determine Tau levels in neurological disease models. However, Tau quantification by WB should be interpreted with care, as this approach has been recognized as prone to produce artifactual results if not properly performed. In the present study, our goal was to evaluate the influence of a freeze-and-thaw cycle, a common procedure preceding WB, to the integrity of Tau in brain homogenates from rats, 3xTg-AD mice and human samples. Homogenates were prepared in ice-cold RIPA buffer supplemented with protease/phosphatase inhibitors. Immediately after centrifugation, an aliquot of the extracts was analyzed via WB to quantify total and phosphorylated Tau levels. The remaining aliquots of the same extracts were stored for at least 2 weeks at either −20 or −80°C and then subjected to WB. Extracts from rodent brains submitted to freeze-and-thaw presented a ∼25 kDa fragment immunoreactive to anti-Tau antibodies. An in-gel digestion followed by mass spectrometry (MS) analysis in excised bands revealed this ∼25 kDa species corresponds to a Tau fragment. Freeze-and-thaw-induced Tau proteolysis was detected even when extracts were stored at −80°C. This phenomenon was not observed in human samples at any storage condition tested. Based on these findings, we strongly recommend the use of fresh extracts of brain samples in molecular analysis of Tau levels in rodents.


2019 ◽  
Vol 77 (10) ◽  
pp. 696-704 ◽  
Author(s):  
Enedina Maria Lobato de OLIVEIRA ◽  
Daniela Antunes MONTANI ◽  
Diogo OLIVEIRA-SILVA ◽  
André Filipe RODRIGUES-OLIVEIRA ◽  
Sandro Luiz de Andrade MATAS ◽  
...  

ABSTRACT The diagnosis of multiple sclerosis (MS) has changed over the last decade, but remains a composite of clinical assessment and magnetic resonance imaging to prove dissemination of lesions in time and space. The intrathecal synthesis of immunoglobulin may be a nonspecific marker and there are no plasma biomarkers that are useful in the diagnosis of MS, presenting additional challenges to their early detection. Methods We performed a preliminary untargeted qualitative lipidomics mass spectrometry analysis, comparing cerebrospinal fluid (CSF) and plasma samples from patients with MS, other inflammatory neurological diseases and idiopathic intracranial hypertension. Results Lipid identification revealed that fatty acids and sphingolipids were the most abundant classes of lipids in the CSF and that glycerolipids and fatty acids were the main class of lipids in the plasma of patients with MS. The area under the curve was 0.995 (0.912–1) and 0.78 (0.583–0.917), respectively. The permutation test indicated that this ion combination was useful for distinguishing MS from other inflammatory diseases (p < 0.001 and 0.055, respectively). Conclusion This study concluded that the CSF and plasma from patients with MS bear a unique lipid signature that can be useful as a diagnostic biomarker.


2020 ◽  
Author(s):  
Junghae Choi

&lt;p&gt;Groundwater and surface water may be contaminated by a range of soluble chemical compounds in regions where rocks are weathered by freeze&amp;#8211;thaw cycles. To reduce this type of pollution, which is particularly common in mining areas, the effects of freeze&amp;#8211;thaw weathering need to be investigated to help determine how the rock is weathered and what chemical compounds result from the weathering. The physical conditions of a rock&amp;#8217;s surface generally change during freeze&amp;#8211;thaw cycles, and voids on weathered surfaces tend to increase in number because of chemical dissolution of the minerals in the rock.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;In this study, freeze&amp;#8211;thaw experiments were performed using rock samples taken from near a mine. The physical changes in equally sized rock samples were observed during the experiment. To understand how chemical compounds were released during freeze&amp;#8211;thaw cycles, powdered rock samples were added to distilled water and the chemical characteristics of the distilled water were determined. Information on physical changes in rocks can be used to understand how weathering affects the stability of cut slopes or tunnels, while the data from chemical analysis provide insights into the release of chemical species that can affect the surrounding natural environment.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;We used physical and chemical (e.g. inductively coupled plasma&amp;#8211;mass spectrometry) analysis methods to observe how the physical properties of the rocks and the chemical forms in a solution changed during a freeze&amp;#8211;thaw experiment. The results show that the porosity and the dry density of the rock samples changed slightly during the experiment. The electrical conductivity and concentrations of chemical forms varied as the freeze&amp;#8211;thaw cycle progressed. This study shows that weathering can be enhanced during freeze&amp;#8211;thaw cycles and that groundwater is easily contaminated by the dissolved chemicals produced during this weathering.&lt;/p&gt;


1991 ◽  
Vol 26 (1) ◽  
pp. 1-16 ◽  
Author(s):  
T.P. Murphy ◽  
H. Brouwer ◽  
M.E. Fox ◽  
E. Nagy

Abstract Eighty-one sediment cores were collected to determine the extent of coal tar contamination in a toxic area of Hamilton Harbour. Over 800 samples were analyzed by a UV spectrophotometric technique that was standardized with gas chromatography/mass spectrometry analysis. The coal tar distribution was variable. The highest concentrations were near the Stelco outfalls and the Hamilton-Wentworth combined sewer outfalls. The total concentration of the 16 polynuclear aromatic hydrocarbons (PAHs) in 48,300 m3 of near-surface sediments exceeded 200 µg/g.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Takashi Kanamoto ◽  
Takashi Tachibana ◽  
Yasushi Kitaoka ◽  
Toshio Hisatomi ◽  
Yasuhiro Ikeda ◽  
...  

Purpose. To investigate the effect of ocular hypertension-induced isomerization of aspartic acid in retinal proteins. Methods. Adult Wistar rats with ocular hypertension were used as an experimental model. D-β-aspartic acid-containing proteins were isolated by SDS-PAGE and western blot with an anti-D-β-aspartic acid antibody and identified by liquid chromatography-mass spectrometry analysis. The concentration of ATP was measured by ELISA. Results. D-β-aspartic acid was expressed in a protein band at around 44.5 kDa at much higher quantities in the retinas of rats with ocular hypertension than in those of normotensive rats. The 44.5 kDa protein band was mainly composed of α-enolase, S-arrestin, and ATP synthase subunits α and β, in both the ocular hypertensive and normotensive retinas. Moreover, increasing intraocular pressure was correlated with increasing ATP concentrations in the retinas of rats. Conclusion. Ocular hypertension affected the expression of proteins containing D-β-aspartic acid, including ATP synthase subunits, and up-regulation of ATP in the retinas of rats.


Foods ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 144
Author(s):  
Immacolata Faraone ◽  
Daniela Russo ◽  
Lucia Chiummiento ◽  
Eloy Fernandez ◽  
Alka Choudhary ◽  
...  

The genus Minthostachys belonging to the Lamiaceae family, and is an important South American mint genus used commonly in folk medicine as an aroma in cooking. The phytochemical-rich samples of the aerial parts of Minthostachys diffusa Epling. were tested for pharmacological and health-promoting bioactivities using in vitro chemical and enzymatic assays. A range of radical scavenging activities of the samples against biological radicals such as nitric oxide and superoxide anion and against synthetic 2,2-diphenyl-1-picrylhydrazyl and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radicals, the ferric reducing antioxidant power and the lipid peroxidation inhibition were determined and ranked using the ‘relative antioxidant capacity index’ (RACI). The ethyl acetate fraction showed the highest RACI of +1.12. Analysis of the various fractions’ inhibitory ability against enzymes involved in diabetes (α-amylase and α-glucosidase), and against enzymes associated with Parkinson’s or Alzheimer’s diseases (acetylcholinesterase and butyrylcholinesterase) also suggested that the ethyl acetate fraction was the most active. Liquid chromatography–tandem mass spectrometry analysis of the ethyl acetate fraction showed more than 30 polyphenolic compounds, including triterpenes. The inhibitory cholinesterase effects of the triterpenes identified from M. diffusa were further analysed by in silico docking of these compounds into 3D-structures of acetylcholinesterase and butyrylcholinesterase. This is the first study on pharmacological activities and phytochemical profiling of the aerial parts of M. diffusa, showing that this plant, normally used as food in South America, is also rich in health-promoting phytochemicals.


Sign in / Sign up

Export Citation Format

Share Document