scholarly journals Bacteriology and Antibiotic Prescription Patterns in a Malawian Tertiary Hospital Burns Unit

2018 ◽  
Author(s):  
Stephen Kasenda ◽  
Donnie Mategula ◽  
Geoffrey Elihu Manda ◽  
Tilinde Keith Chokotho

ABSTRACTIntroductionInfections are responsible for up to 85% of deaths in patients with burn injuries. Proper management of infections in patients with burns requires knowledge of local microbial landscape and antimicrobial resistance patterns. Most burns units in low to middle income countries lack this data to guide patient management.Methods and resultsWe conducted a retrospective audit of adult (≥17 years) patient records admitted between at 1st June 2007 and May 2017 at Queen Elizabeth Central Hospital Burns unit in Blantyre Malawi with an index complaint of burn injury. Descriptive statistical analysis was performed to determine antibiotic prescription patterns, microbial isolates and antimicrobial resistance patterns on the 500 patient files that met the inclusion criteria. Cephalosporin’s and Penicillin’s constituted 72.3% of the 328 antibiotic prescriptions given to 212 patients and 84% of all prescriptions were potentially inappropriate. A total of 102 bacterial isolates were identified and a majority (30.4%; n=31) were resistant to Aminoglycosides and Aminocyclitols (23.5%; n=24); seconded by Penicillin’s at 19.6% (n=20). Pseudomonas, staphylococcus and streptococcus species constituted 36.1%, 25% and 16.7% of all resistant bacteria that were isolated and they were thus the most common bacterial isolates. Drug resistance was more common among gram negative bacteria (48.8% versus 26.2%) and a greater proportion of patients (74.1%) that had antibiotic sensitivity testing were affected by drug resistant gram negative bacteria which appear on the World Health Organisation list of priority pathogens.ConclusionThe results of our preliminary study point towards nosocomial gram negative bacteria which appear on the World Health Organisations list of priority pathogens as the more common sources of antibiotic resistance. This scenario is potentially driven by inappropriate antibiotic prescriptions as well as clinical and laboratory diagnostic imprecision in addition to the universally recognised post burn pathophysiological changes of hypermetabolism and immunosuppression. Improvements in the areas of antimicrobial stewardship, diagnostic capacity and burns related research are needed in order to achieve optimal therapeutic outcomes and resource utilisation.

Author(s):  
Mohammad Hashemzadeh ◽  
Reza Heydari ◽  
Aram Asareh Zadegan Dezfuli ◽  
Morteza Saki ◽  
Hossein Meghdadi ◽  
...  

Abstract Background Burn infection continues to be a major issue of concern globally and causes more harm to developing countries. This study aimed to identify the aerobic bacteriological profiles and antimicrobial resistance patterns of burn infections in three hospitals in Abadan, southwest Iran. Methods The cultures of various clinical samples obtained from 325 burn patients were investigated from January to December 2019. All bacterial isolates were identified based on the standard microbiological procedures. Antibiotic susceptibility tests were performed according to the CLSI. Results A total of 287 bacterial species were isolated burn patients.P. aeruginosa was the most frequent bacterial isolate in Gram-negative bacteria and S. epidermidis was the most frequent species isolated in Gram-positive bacteria. The maximum resistance was found to ampicillin, gentamicin, ciprofloxacin, while in Gram-negative bacteria, the maximum resistance was found to imipenem, gentamicin, ciprofloxacin, ceftazidime, and amikacin. The occurrence of multidrug resistance phenotype was as follows: P. aeruginosa (30.3 %), Enterobacter spp (11.1 %), Escherichia coli (10.5 %), Citrobacter spp (2.1 %), S. epidermidis (2.8 %), S. aureus, and S. saprophyticus (0.7 %). Conclusion Owing to the diverse range of bacteria that because burn wound infection, regular investigation, and diagnosis of common bacteria and their resistance patterns is recommended to determine the proper antibiotic regimen for appropriate therapy.


Diseases ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 15
Author(s):  
Ram Shankar Prasad Sah ◽  
Binod Dhungel ◽  
Binod Kumar Yadav ◽  
Nabaraj Adhikari ◽  
Upendra Thapa Shrestha ◽  
...  

Background: Antimicrobial resistance (AMR) among Gram-negative pathogens, predominantly ESBL-producing clinical isolates, are increasing worldwide. The main aim of this study was to determine the prevalence of ESBL-producing clinical isolates, their antibiogram, and the frequency of ESBL genes (blaTEM and blaCTX-M) in the clinical samples from patients. Methods: A total of 1065 clinical specimens from patients suspected of heart infections were collected between February and August 2019. Bacterial isolates were identified on colony morphology and biochemical properties. Thus, obtained clinical isolates were screened for antimicrobial susceptibility testing (AST) using modified Kirby–Bauer disk diffusion method, while ESBL producers were identified by using a combination disk diffusion method. ESBL positive isolates were further assessed using conventional polymerase chain reaction (PCR) to detect the ESBL genes blaTEM and blaCTX-M. Results: Out of 1065 clinical specimens, 17.8% (190/1065) showed bacterial growth. Among 190 bacterial isolates, 57.4% (109/190) were Gram-negative bacteria. Among 109 Gram-negative bacteria, 40.3% (44/109) were E. coli, and 30.2% (33/109) were K. pneumoniae. In AST, 57.7% (n = 63) Gram-negative bacterial isolates were resistant to ampicillin and 47.7% (n = 52) were resistant to nalidixic acid. Over half of the isolates (51.3%; 56/109) were multidrug resistant (MDR). Of 44 E. coli, 27.3% (12/44) were ESBL producers. Among ESBL producer E. coli isolates, 58.4% (7/12) tested positive for the blaCTX-M gene and 41.6% (5/12) tested positive for the blaTEM gene. Conclusion: Half of the Gram-negative bacteria in our study were MDR. Routine identification of an infectious agent followed by AST is critical to optimize the treatment and prevent antimicrobial resistance.


2021 ◽  
Vol 2 (4) ◽  
pp. 01-02
Author(s):  
Daniel Amsterdam

In 2009, the World health organization (WHO) referred to the problem of antibiotics and antibiotic resistance stating, “Antibiotic Resistance – one of the three greatest threats to human health.” In 2019 (i.e., just as the COVID-19 pandemic was evolving), more than 2.8 million antibiotic-resistant infections were identified in the United States, resulting in more than 35,000 deaths (CDC 2019). The initial laboratory assay which demonstrated the activity of an antibacterial compound was performed by Alexander Fleming. He showed that an extract from the mold, Penicillium rubens, could inhibit the growth of several species of Gram-positive bacteria – but not Gram-negative bacteria that were cross-streaked on agar against the diffused Penicillium compound.


2018 ◽  
Vol 10 (04) ◽  
pp. 432-436 ◽  
Author(s):  
Nidhi Bhardwaj ◽  
Surbhi Khurana ◽  
Minu Kumari ◽  
Rajesh Malhotra ◽  
Purva Mathur

ABSTRACT INTRODUCTION: Antimicrobial resistance is an increasing problem worldwide especially among the surgical site infections (SSIs). SSI is becoming more serious due to hospital-acquired infections/nosocomial infections, which further leads to the overuse of broad-spectrum antibiotics. To investigate the antimicrobial resistance patterns among Gram-negative bacteria in SSI in in- and out-patients the present study was designed. METHODOLOGY: During the 4 years (January 2013–December 2016), the antimicrobial resistant pattern was studied in the admitted patients and in the patients who were followed up to the outpatients department (OPD) after discharge. Antimicrobial resistance pattern testing was done by the disk diffusion method on Mueller-Hinton agar and by E-test for ten antibiotics according to The Clinical and Laboratory Standards Institute guidelines for Gram-negative bacilli. RESULTS: A total of 2,447 strains were isolated from the studied population on over the period of 4 years. Of 2447, 1996 (81%) were isolated from patients who had SSI during the hospital stay, and 451 (18%) were from patients who attended the OPD after discharge. In the outpatients, who followed up in the OPD for the SSI, Escherichia coli (148), and Pseudomonas aeruginosa (93), whereas in the patients who develop SSI during their hospital stay, Acinetobacter baumannii (622), E. coli (424), and Klebsiella pneumoniae (315) were found to be common. A very high resistance pattern was observed in both the studied groups; however, a higher resistance pattern was seen in in-patients as compared to outpatients. CONCLUSION: In our study, we have reported resistance pattern in Gram-negative bacteria isolated from the patients who were came for the follow as well as in the inpatients. For the outpatients, it can be concluded that it could be a community-acquired infection which is also an alarming condition for our society.


2020 ◽  
Vol 2 (1) ◽  
pp. 41-48
Author(s):  
Felicia Susanto ◽  
◽  
Catur Purnamawati ◽  
Devvi Riasari ◽  
◽  
...  

Pneumonia is the ninth most common disease in dr. Soedarsono Pasuruan Region General Hospital. The resistance of Klebsiella pneumoniae to third-generation Cephalosporins and Streptococcus pneumonia to Penicillin were the topics discussed on World Health Organization’s (WHO) global report for antimicrobial resistance. This study purpose is to analyze the microbial pattern and antimicrobial resistance of bacterial pneumonia from sputum culture. This is a descriptive retrospective study with a total of 59 requests for sputum culture which included a clinical diagnosis of pneumonia. There are 37 male (63%) and 22 female (37%) with the most age group was adult (18-59 years) 39 people (66%) included in this study. Gram-negative bacteria are more common as the cause of pneumonia than gram-positive. Gram-negative bacteria that caused pneumonia in this study are Klebsiella pneumoniae (25.4%), Acinetobacter baumannii (15.3%), dan Enterobacter cloacae complex (15.3%). Gram-positive are Staphylococcus haemolyticus (11.9%), Staphylococcus aureus (8.5%), and Staphylococcus epidermidis (8.5%). The most antimicrobial resistance in gram-negative bacteria is Ampicillin (94.3%) and gram-positive bacteria are Benzylpenicillin (94.1%). The number resistance of Penicillin in gram-negative and gram-positive was high; therefore empirical therapy for pneumonia still uses broad-spectrum antimicrobial like beta-lactam.


2020 ◽  
Author(s):  
Nusrat Abedin ◽  
Abdullah Hamed A Alshehri ◽  
Ali M A Almughrbi ◽  
Olivia Moore ◽  
Sheikh Alyza ◽  
...  

Antimicrobial resistance (AMR) has become one of the more serious threats to the global health. The emergence of bacteria resistant to antimicrobial substances decreases the potencies of current antibiotics. Consequently, there is an urgent and growing need for the developing of new classes of antibiotics. Three prepared novel iron complexes have a broad-spectrum antimicrobial activity with minimum bactericidal concentration (MBC) values ranging from 3.5 to 10 mM and 3.5 to 40 mM against Gram-positive and Gram-negative bacteria with antimicrobial resistance phenotype, respectively. Time-kill studies and quantification of the extracellular DNA confirmed the bacteriolytic mode of action of the iron-halide compounds. Additionally, the novel complexes showed significant antibiofilm activity against the tested pathogenic bacterial strains at concentrations lower than the MBC. The cytotoxic effect of the complexes on different mammalian cell lines show sub-cytotoxic values at concentrations lower than the minimum bactericidal concentrations.


2020 ◽  
Vol 20 (3) ◽  
pp. 192-208 ◽  
Author(s):  
Talita Odriane Custodio Leite ◽  
Juliana Silva Novais ◽  
Beatriz Lima Cosenza de Carvalho ◽  
Vitor Francisco Ferreira ◽  
Leonardo Alves Miceli ◽  
...  

Background: According to the World Health Organization, antimicrobial resistance is one of the most important public health threats of the 21st century. Therefore, there is an urgent need for the development of antimicrobial agents with new mechanism of action, especially those capable of evading known resistance mechanisms. Objective: We described the synthesis, in vitro antimicrobial evaluation, and in silico analysis of a series of 1H-indole-4,7-dione derivatives. Methods: The new series of 1H-indole-4,7-diones was prepared with good yield by using a copper(II)- mediated reaction between bromoquinone and β-enamino ketones bearing alkyl or phenyl groups attached to the nitrogen atom. The antimicrobial potential of indole derivatives was assessed. Molecular docking studies were also performed using AutoDock 4.2 for Windows. Characterization of all compounds was confirmed by one- and two-dimensional NMR techniques 1H and 13C NMR spectra [1H, 13C – APT, 1H x 1H – COSY, HSQC and HMBC], IR and mass spectrometry analysis. Results: Several indolequinone compounds showed effective antimicrobial profile against Grampositive (MIC = 16 µg.mL-1) and Gram-negative bacteria (MIC = 8 µg.mL-1) similar to antimicrobials current on the market. The 3-acetyl-1-(2,5-dimethylphenyl)-1H-indole-4,7-dione derivative exhibited an important effect against different biofilm stages formed by a serious hospital life-threatening resistant strain of Methicillin-Resistant Staphylococcus aureus (MRSA). A hemocompatibility profile analysis based on in vitro hemolysis assays revealed the low toxicity effects of this new series. Indeed, in silico studies showed a good pharmacokinetics and toxicological profiles for all indolequinone derivatives, reinforcing their feasibility to display a promising oral bioavailability. An elucidation of the promising indolequinone derivatives binding mode was achieved, showing interactions with important sites to biological activity of S. aureus DNA gyrase. These results highlighted 3-acetyl-1-(2-hydroxyethyl)-1Hindole- 4,7-dione derivative as broad-spectrum antimicrobial prototype to be further explored for treating bacterial infections. Conclusion: The highly substituted indolequinones were obtained in moderate to good yields. The pharmacological study indicated that these compounds should be exploited in the search for a leading substance in a project aimed at obtaining new antimicrobials effective against Gram-negative bacteria.


Sign in / Sign up

Export Citation Format

Share Document