scholarly journals Recalibration of the Antimicrobial MIC

2021 ◽  
Vol 2 (4) ◽  
pp. 01-02
Author(s):  
Daniel Amsterdam

In 2009, the World health organization (WHO) referred to the problem of antibiotics and antibiotic resistance stating, “Antibiotic Resistance – one of the three greatest threats to human health.” In 2019 (i.e., just as the COVID-19 pandemic was evolving), more than 2.8 million antibiotic-resistant infections were identified in the United States, resulting in more than 35,000 deaths (CDC 2019). The initial laboratory assay which demonstrated the activity of an antibacterial compound was performed by Alexander Fleming. He showed that an extract from the mold, Penicillium rubens, could inhibit the growth of several species of Gram-positive bacteria – but not Gram-negative bacteria that were cross-streaked on agar against the diffused Penicillium compound.

2021 ◽  
Author(s):  
Mahshid Nasehi ◽  
Babak Eshrati ◽  
Hamidreza Baradaran ◽  
Leila Janani ◽  
Sasan Ghorbani-Kalkhajeh ◽  
...  

Abstract Background: The World Health Organization repeatedly emphasizes the spread and association of nosocomial infections with microbial resistance. In a 2014 report, the World Health Organization cited microbial resistance as a global threat. In recent years, the world has seen the rapid growth of antibiotic-resistant E. coli in most areas, which poses a serious threat to public health. A high percentage of bacteria that cause nosocomial infections have been resistant to treatment. The most common bacterial agent among these nosocomial infections is E. coli. This bacterium is one of the main causes of nosocomial infections among hospitalized patients. One of the most important goals of the Global Antimicrobial Resistance and Use Surveillance System (GLASS) is timely identification and transmission of Emerging Antimicrobial Resistance (EAR) or outbreak of antibiotic resistance. One of the main ways to identify this "emerging" at the national or local level is to identify deviations from the expected resistance in drug compounds. As a result, if the observed cases of a drug-resistant pathogen are significantly higher than expected, it could indicate "emerging".Purpose: This study aimed to identify and transmit EAR or outbreak of antibiotic resistance among antibiotics used in the treatment of nosocomial infections caused by E. coli. This was done by comparing the observed cases of resistant E. coli with the predicted cases of resistant E. coli, which were predicted by the compartment model.Methods: This is a hospital-based study that used data from the nosocomial infection survelliance system to investigate observed cases of antibiotic resistance. In this study, the results of 12,954 antibiogram tests related to 57 hospitals located in 31 provinces of Iran were divided into two parts (results related to the first half of 2017 and results related to the second half of 2017). The model was developed in the second half of the year to predict expected cases. Before developeing model to predict the expected cases of resistant E. coli, the validity of the model was evaluated by implementing the model in the first half of the year. Finally, the predicted cases of resistant E. coli were compared with those observed in 2017. If the difference between the two was statistically significant, it indicated the outbreak of E.coli. This model evaluated 11 antibiotics recommended by the World Health Organization that are used to treat nosocomial infections caused by E. coli.Results: The results of this study showed that the outbreak of E. coli resistant to ampicillin and ceftazidime occurred in 2017 in hospitals of Iran. This means that resistance to ampicillin and ceftazidime antibiotics in nosocomial infections caused by E. coli is higher than expected and has become "emerging".Conclusion: This study showed how the outbreak of antibiotic resistance in the country's hospitals can be investigated. Using the method of this study, we can investigate the outbreak of antibiotic-resistant E. coli in the coming years and in different substrates. The results of this study showed that the administration and use of antibiotics should be reconsidered.


2021 ◽  
Author(s):  
Mahshid Nasehi ◽  
Babak Eshrati ◽  
Hamid Reza Baradaran ◽  
Leila Janani ◽  
Sasan Ghorbani Kalkhajeh ◽  
...  

Abstract Background: The World Health Organization repeatedly emphasizes the spread and association of nosocomial infections with microbial resistance. In a 2014 report, the World Health Organization cited microbial resistance as a global threat. In recent years, the world has seen the rapid growth of antibiotic-resistant E. coli in most areas, which poses a serious threat to public health. A high percentage of bacteria that cause nosocomial infections have been resistant to treatment. The most common bacterial agent among these nosocomial infections is E. coli. This bacterium is one of the main causes of nosocomial infections among hospitalized patients. One of the most important goals of the Global Antimicrobial Resistance and Use Surveillance System (GLASS) is timely identification and transmission of Emerging Antimicrobial Resistance (EAR) or outbreak of antibiotic resistance. One of the main ways to identify this "emerging" at the national or local level is to identify deviations from the expected resistance in drug compounds. As a result, if the observed cases of a drug-resistant pathogen are significantly higher than expected, it could indicate "emerging".Purpose: This study aimed to identify and transmit EAR or outbreak of antibiotic resistance among antibiotics used in the treatment of nosocomial infections caused by E. coli. This was done by comparing the observed cases of resistant E. coli with the predicted cases of resistant E. coli, which were predicted by the compartment model.Methods: This is a hospital-based study that used data from the nosocomial infection survelliance system to investigate observed cases of antibiotic resistance. In this study, the results of 12,954 antibiogram tests related to 57 hospitals located in 31 provinces of Iran were divided into two parts (results related to the first half of 2017 and results related to the second half of 2017). The model was developed in the second half of the year to predict expected cases. Before developeing model to predict the expected cases of resistant E. coli, the validity of the model was evaluated by implementing the model in the first half of the year. Finally, the predicted cases of resistant E. coli were compared with those observed in 2017. If the difference between the two was statistically significant, it indicated the outbreak of E.coli. This model evaluated 11 antibiotics recommended by the World Health Organization that are used to treat nosocomial infections caused by E. coli.Results: The results of this study showed that the outbreak of E. coli resistant to ampicillin and ceftazidime occurred in 2017 in hospitals of Iran. This means that resistance to ampicillin and ceftazidime antibiotics in nosocomial infections caused by E. coli is higher than expected and has become "emerging".Conclusion: This study showed how the outbreak of antibiotic resistance in the country's hospitals can be investigated. Using the method of this study, we can investigate the outbreak of antibiotic-resistant E. coli in the coming years and in different substrates. The results of this study showed that the administration and use of antibiotics should be reconsidered.


Acta Naturae ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 34-45
Author(s):  
Olga V. Kisil ◽  
Tatiana A. Efimenko ◽  
Nina I. Gabrielyan ◽  
Olga V. Efremenkova

The spread of antibiotic resistance among pathogens represents a threat to human health around the world. In 2017, the World Health Organization published a list of 12 top-priority antibiotic-resistant pathogenic bacteria for which new effective antibiotics or new ways of treating the infections caused by them are needed. This review focuses on Acinetobacter baumannii, one of these top-priority pathogens. The pathogenic bacterium A. baumannii is one of the most frequently encountered infectious agents in the world; its clinically significant features include resistance to UV light, drying, disinfectants, and antibiotics. This review looks at the various attempts that have been made to tackle the problem of drug resistance relating to A. baumannii variants without the use of antibiotics. The potential of bacteriophages and antimicrobial peptides in the treatment of infections caused by A. baumannii in both planktonic and biofilm form is assessed. Such topics as research into the development of vaccines based on the outer membrane proteins of A. baumannii and the use of silver nanoparticles, as well as photodynamic and chelate therapy, are also covered.


2018 ◽  
Vol 46 (S1) ◽  
pp. 25-31 ◽  
Author(s):  
Enrico Baraldi ◽  
Olof Lindahl ◽  
Miloje Savic ◽  
David Findlay ◽  
Christine Årdal

The World Health Organization (WHO) has published a global priority list of antibiotic-resistant bacteria to guide research and development (R&D) of new antibiotics. Every pathogen on this list requires R&D activity, but some are more attractive for private sector investments, as evidenced by the current antibacterial pipeline. A “pipeline coordinator” is a governmental/non-profit organization that closely tracks the antibacterial pipeline and actively supports R&D across all priority pathogens employing new financing tools.


2021 ◽  
Vol 46 (4) ◽  
pp. 1-2
Author(s):  
Joseph Meaney ◽  

COVID-19 vaccine passports run the risk of creating a divided society where social privileges or restrictions based on “fitness” lead to discrimination based on immunization status. Individuals have a strong right to be free of coercion to take a COVID-19 vaccine, and we should be very leery of further invasion of private medical decisions. These concerns are shared both internationally and in the United States, and the World Health Organization, the Biden administration, and many US governors oppose COVID-19 vaccine credentials. In addition, regulations for COVID-19 vaccine credentials face practical barriers, including lack of access globally, especially among the poor; and lack of scientific data on the efficacy of these vaccines.


2021 ◽  
Author(s):  
Sarah Kreps

BACKGROUND Misinformation about COVID-19 has presented challenges to public health authorities during pandemics. Understanding the prevalence and type of misinformation across contexts offers a way to understand the discourse around COVID-19 while informing potential countermeasures. OBJECTIVE The aim of the study was to study COVID-19 content on two prominent microblogging platform, Twitter, based in the United States, and Sina Weibo, based in China, and compare the content and relative prevalence of misinformation to better understand public discourse of public health issues across social media and cultural contexts. METHODS A total of 3,579,575 posts were scraped from both Weibo and Twitter, focusing on content from January 30th, 2020, when the World Health Organization (WHO) declared COVID-19 a “Public Health Emergency of International Concern” and February 6th, 2020. A 1% random sample of tweets that contained both the English keywords “coronavirus” and “covid-19” and the equivalent Chinese characters was extracted and analyzed based on changes in the frequencies of keywords and hashtags. Misinformation on each platform was compared by manually coding and comparing posts using the World Health Organization fact-check page to adjudicate accuracy of content. RESULTS Both platforms posted about the outbreak and transmission but posts on Sina Weibo were less likely to reference controversial topics such as the World Health Organization and death and more likely to cite themes of resisting, fighting, and cheering against the coronavirus. Misinformation constituted 1.1% of Twitter content and 0.3% of Weibo content. CONCLUSIONS Quantitative and qualitative analysis of content on both platforms points to cross-platform differences in public discourse surrounding the pandemic and informs potential countermeasures for online misinformation.


2018 ◽  
Vol 16 (5) ◽  
pp. 341-348
Author(s):  
On-Anong SOMSAP

Antibiotic resistance bacteria has become an increasing problem now today due to many factors. This study investigates the efficacy of Prismatomeris tetrandra K. Schum root extract as a new source of antibacterial activity for antibiotic resistant bacteria using agar well diffusion method. The results showed that S. aureus TISTR517 exhibited more sensitivity to P. tetrandra K. Schum root extract than other Gram-positive bacteria indicator strains. On the other hand, Gram-negative bacteria exhibited resistance to P. tetrandra K. Schum root extract. The study further showed the activity between P. tetrandra K. Schum root extract and gentamycin (10 µg), it revealed that MRSA142 was resistant to gentamycin (10µg) but sensitive to P. tetrandra K. Schum root extract. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) was evaluated by using S. aureus TISTR517 and MRSA142 as indicator strains. The MIC value was 0.59 mg/mL and 1.17 mg/mL for S. aureus TISTR517 and MRSA142, respectively. MBC assay demonstrated that the MBC value was 9.75 mg/mL and 150 mg/mL for S. aureus TISTR517 and MRSA142 respectively. The mode of action was investigated with the presence of P. tetrandra K. Schum root extract in the culture broth. The action of P. tetrandra K. Schum root extract was revealed of bacteriostatic activity due to the Optical density (OD) at 600 nm and Colony-Forming Units (CFU) of indicator strains were continuously decreased.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Meseret Yirdaw ◽  
Belachew Umeta ◽  
Yimer Mokennen

Background. The availability of poor-quality drugs on the drug market might favor the ineffectiveness of the drug and/antimicrobial resistance. Aim. To evaluate the quality of similar batches of ethambutol hydrochloride tablets available in different governmental health facilities of Jimma town, southwest Ethiopia. Methods. The World Health Organization checklist was used to inspect the storage area of health facilities and check medicines for the sign of counterfeit. The test was conducted as per the United States Pharmacopeia on six similar batches of ethambutol hydrochloride sampled from different governmental health facilities. Data were analyzed using SPSS version 20, and one-way ANOVA was used for comparing the dissolution profile and weight variation of batches. Results. Three health facilities did not comply with the storage area specifications for pharmaceuticals. No batches have shown any sign of counterfeit. All of the tablet batches tested complied with USP specifications for weight variation, percentage purity, and dissolution test. Conclusions and Recommendation. The entire tablet batches complied with the World Health Organization specification for packaging and labelling of pharmaceuticals. All tablet batches complied with the test for weight variation, purity of drug substance, and dissolution. Since some health facilities did not comply with at least one specification for storage of pharmaceuticals, regulatory agencies and stack holders are advised to inspect the health facilities to ensure appropriate storage of pharmaceuticals in health facilities.


2009 ◽  
Vol 14 (21) ◽  
Author(s):  
A Solovyov ◽  
G Palacios ◽  
T Briese ◽  
W I Lipkin ◽  
R Rabadan

In March and April 2009, a new strain of influenza A(H1N1) virus has been isolated in Mexico and the United States. Since the initial reports more than 10,000 cases have been reported to the World Health Organization, all around the world. Several hundred isolates have already been sequenced and deposited in public databases. We have studied the genetics of the new strain and identified its closest relatives through a cluster analysis approach. We show that the new virus combines genetic information related to different swine influenza viruses. Segments PB2, PB1, PA, HA, NP and NS are related to swine H1N2 and H3N2 influenza viruses isolated in North America. Segments NA and M are related to swine influenza viruses isolated in Eurasia.


PEDIATRICS ◽  
1977 ◽  
Vol 60 (6) ◽  
pp. 797-804
Author(s):  
Myron E. Wegman

Data for this article, as in previous reports,1 are drawn principally from the Monthly Vital Statistics Report,2-5 published by the National Center for Health Statistics. The international data come from the Demographic Yearbook6 and the quarterly Population and Vital Statistics Report,7 both published by the Statistical Office of the United Nations, and the World Health Statistics Report,8 published by the World Health Organization. All the United States data for 1976 are estimates by place of occurrence based upon a 10% sample of material received in state offices between two dates, one month apart, regardless of when the event occurred. Experience has shown that for the country as a whole the estimate is very close to the subsequent final figures.


Sign in / Sign up

Export Citation Format

Share Document