scholarly journals Mis-expression of the Alzheimer’s disease associated gene Ankyrin causes memory loss and shortened lifespan in Drosophila

2018 ◽  
Author(s):  
James P Higham ◽  
Bilal R Malik ◽  
Edgar Buhl ◽  
Jenny Dawson ◽  
Anna S Ogier ◽  
...  

ABSTRACTAlzheimer’s disease (AD) is the most common form of dementia and is characterized by the accumulation of extracellular amyloid beta (Aβ) plaques and intracellular neurofibrillary tangles of hyperphosphorylated Tau, including the 4R0N isoform. Recent epigenome-wide association studies (EWAS) of AD have identified a number of loci that are differentially methylated in AD cortex. Indeed, hypermethylation of the Ankyrin 1 (ANK1) gene in AD has been reported in the cortex in numerous different post-mortem brain cohorts. Little is known about the normal function of ANK1 in the healthy brain, nor the role it may play in AD. We have generated Drosophila models to allow us to functionally characterize Drosophila Ank2, the ortholog of human ANK1. These models have targeted reduction in the expression of Ank2 in neurons. We find that Drosophila with reduced neuronal Ank2 expression have shortened lifespan, reduced locomotion, reduced memory and reduced neuronal excitability similar to flies overexpressing either human mutant APP (that leads to Aβ42 production) and MAPT (that leads to 0N4R Tau). Therefore, we show that the mis-expression of Ank2 can drive disease relevant processes and phenocopy some features of AD and we propose targeting ANK1 may have therapeutic potential. This represents the first study to characterize a gene implicated in AD, which was nominated from EWAS.Author summaryThe majority (>95%) of Alzheimer’s disease (AD) cases are sporadic, with their incidence attributed to common genetic mutations, epigenetic variation, aging and the environment. There is no cure for AD and only limited treatment options which only treat the symptoms of AD and only work in some people. Recent epigenome-wide association studies (EWAS) in AD have highlighted hypermethylation of the Ankyrin1 (ANK1) gene in AD cortex. Little is known of the normal role of the gene in the brain. Here, we have demonstrated that Drosophila with reduced neuronal expression of the Drosophila ortholog of human ANK1 (Ank2), can drive AD relevant processes including locomotor difficulties, memory loss and shortened lifespan similar to expression of human amyloid-Beta or tau mutant proteins. Furthermore, increasing Ank2 expression reversed the memory loss caused by expression of human amyloid-Beta or tau mutant proteins, suggesting that targeting ANK1 may have therapeutic potential. This represents the first study to characterize a gene implicated in AD, which was nominated from EWAS.

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Li Zuo ◽  
Benjamin T. Hemmelgarn ◽  
Chia-Chen Chuang ◽  
Thomas M. Best

An increasing number of studies have proposed a strong correlation between reactive oxygen species (ROS)-induced oxidative stress (OS) and the pathogenesis of Alzheimer’s disease (AD). With over five million people diagnosed in the United States alone, AD is the most common type of dementia worldwide. AD includes progressive neurodegeneration, followed by memory loss and reduced cognitive ability. Characterized by the formation of amyloid-beta (Aβ) plaques as a hallmark, the connection between ROS and AD is compelling. Analyzing the ROS response of essential proteins in the amyloidogenic pathway, such as amyloid-beta precursor protein (APP) and beta-secretase (BACE1), along with influential signaling programs of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and c-Jun N-terminal kinase (JNK), has helped visualize the path between OS and Aβoverproduction. In this review, attention will be paid to significant advances in the area of OS, epigenetics, and their influence on Aβplaque assembly. Additionally, we aim to discuss available treatment options for AD that include antioxidant supplements, Asian traditional medicines, metal-protein-attenuating compounds, and histone modifying inhibitors.


Author(s):  
Lili Pan ◽  
Yu Ma ◽  
Yunchun Li ◽  
Haoxing Wu ◽  
Rui Huang ◽  
...  

Abstract:: Recent studies have proven that the purinergic signaling pathway plays a key role in neurotransmission and neuromodulation, and is involved in various neurodegenerative diseases and psychiatric disorders. With the characterization of the subtypes of receptors in purinergic signaling, i.e. the P1 (adenosine), P2X (ion channel) and P2Y (G protein-coupled), more attentions were paid to the pathophysiology and therapeutic potential of purinergic signaling in central nervous system disorders. Alzheimer’s disease (AD) is a progressive and deadly neurodegenerative disease that is characterized by memory loss, cognitive impairment and dementia. However, as drug development aimed to prevent or control AD follows a series of failures in recent years, more researchers focused on the neuroprotection-related mechanisms such as purinergic signaling in AD patients to find a potential cure. This article reviews the recent discoveries of purinergic signaling in AD, summaries the potential agents as modulators for the receptors of purinergic signaling in AD related research and treatments. Thus, our paper provided an insight for purinergic signaling in the development of anti-AD therapies.


Author(s):  
Ding-Yuan Tian ◽  
Yuan Cheng ◽  
Zhen-Qian Zhuang ◽  
Chen-Yang He ◽  
Qian-Guang Pan ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Se Jong Oh ◽  
Hae-June Lee ◽  
Ye Ji Jeong ◽  
Kyung Rok Nam ◽  
Kyung Jun Kang ◽  
...  

Abstract Alzheimer’s disease (AD) is a chronic neurodegenerative disorder and the leading cause of dementia, but therapeutic treatment options are limited. Taurine has been reported to have neuroprotective properties against dementia, including AD. The present study aimed to investigate the treatment effect of taurine in AD mice by functional molecular imaging. To elucidate glutamate alterations by taurine, taurine was administered to 5xFAD transgenic mice from 2 months of age, known to apear amyloid deposition. Then, we performed glutamate positron emission tomography (PET) imaging studies for three groups (wild-type, AD, and taurine-treated AD, n = 5 in each group). As a result, brain uptake in the taurine-treated AD group was 31–40% higher than that in the AD group (cortex: 40%, p < 0.05; striatum: 32%, p < 0.01; hippocampus: 36%, p < 0.01; thalamus: 31%, p > 0.05) and 3–14% lower than that in the WT group (cortex: 10%, p > 0.05; striatum: 15%, p > 0.05; hippocampus: 14%, p > 0.05; thalamus: 3%, p > 0.05). However, we did not observe differences in Aβ pathology between the taurine-treated AD and AD groups in immunohistochemistry experiments. Our results reveal that although taurine treatment did not completely recover the glutamate system, it significantly increased metabolic glutamate receptor type 5 brain uptake. Therefore, taurine has therapeutic potential against AD.


ACS Nano ◽  
2014 ◽  
Vol 8 (3) ◽  
pp. 2345-2359 ◽  
Author(s):  
Qingxiang Song ◽  
Meng Huang ◽  
Lei Yao ◽  
Xiaolin Wang ◽  
Xiao Gu ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Rachelle Balez ◽  
Lezanne Ooi

Alzheimer’s disease (AD) is a neurodegenerative disorder involving the loss of neurons in the brain which leads to progressive memory loss and behavioral changes. To date, there are only limited medications for AD and no known cure. Nitric oxide (NO) has long been considered part of the neurotoxic insult caused by neuroinflammation in the Alzheimer’s brain. However, focusing on early developments, prior to the appearance of cognitive symptoms, is changing that perception. This has highlighted a compensatory, neuroprotective role for NO that protects synapses by increasing neuronal excitability. A potential mechanism for augmentation of excitability by NO is via modulation of voltage-gated potassium channel activity (Kv7 and Kv2). Identification of the ionic mechanisms and signaling pathways that mediate this protection is an important next step for the field. Harnessing the protective role of NO and related signaling pathways could provide a therapeutic avenue that prevents synapse loss early in disease.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Anurag Kumar Singh ◽  
Sachchida Nand Rai ◽  
Anand Maurya ◽  
Gaurav Mishra ◽  
Rajendra Awasthi ◽  
...  

Since primitive times, herbs have been extensively used in conventional remedies for boosting cognitive impairment and age-associated memory loss. It is mentioned that medicinal plants have a variety of dynamic components, and they have become a prominent choice for synthetic medications for the care of cognitive and associated disorders. Herbal remedies have played a major role in the progression of medicine, and many advanced drugs have already been developed. Many studies have endorsed practicing herbal remedies with phytoconstituents, for healing Alzheimer’s disease (AD). All the information in this article was collated from selected research papers from online scientific databases, such as PubMed, Web of Science, and Scopus. The aim of this article is to convey the potential of herbal remedies for the prospect management of Alzheimer’s and related diseases. Herbal remedies may be useful in the discovery and advancement of drugs, thus extending new leads for neurodegenerative diseases such as AD. Nanocarriers play a significant role in delivering herbal medicaments to a specific target. Therefore, many drugs have been described for the management of age-linked complaints such as dementia, AD, and the like. Several phytochemicals are capable of managing AD, but their therapeutic claims are restricted due to their lower solubility and metabolism. These limitations of natural therapeutics can be overcome by using a targeted nanocarrier system. This article will provide the primitive remedies as well as the development of herbal remedies for AD management.


2021 ◽  
pp. 1-13
Author(s):  
C. Aaron Smith ◽  
Haddon Smith ◽  
Lisa Roberts ◽  
Lori Coward ◽  
Gregory Gorman ◽  
...  

Background: While extensive research on the brain has failed to identify effective therapies, using probiotics to target the gut microbiome has shown therapeutic potential in Alzheimer’s disease (AD). Genetically modified probiotics (GMP) are a promising strategy to deliver key therapeutic peptides with high efficacy and tissue specificity. Angiotensin (Ang)-(1-7) levels inversely correlate to AD severity, but its administration is challenging. Our group has successfully established a GMP-based method of Ang-(1-7) delivery. Objective: Since Drosophila represents an excellent model to study the effect of probiotics on complex disorders in a high throughput manner, we tested whether oral supplementation with Lactobacillus paracasei releasing Ang-(1-7) (LP-A) delays memory loss in a Drosophila AD model. Methods: Flies overexpressing the human amyloid-β protein precursor and its β-site cleaving enzyme in neurons were randomized to receive four 24-h doses of Lactobacillus paracasei alone (LP), LP-A or sucrose over 14 days. Memory was assessed via an aversive phototaxic suppression assay. Results: Optimal dilution,1:2, was determined based on palatability. LP-A improved memory in trained AD males but worsened cognition in AD females. LP-supplementation experiments confirmed that Ang-(1-7) conferred additional cognitive benefits in males and was responsible for the deleterious cognitive effects in females. Sex-specific differences in the levels of angiotensin peptides and differential activation of the kynurenine pathway of tryptophan metabolism in response to supplementation may underlie this male-only therapeutic response. Conclusion: In summary, LP-A ameliorated the memory deficits of a Drosophila AD model, but effects were sex-specific. Dosage optimization may be required to address this differential response.


Metallomics ◽  
2014 ◽  
Vol 6 (12) ◽  
pp. 2189-2192 ◽  
Author(s):  
Maripaz Márquez ◽  
Luis M. Blancas-Mejía ◽  
Adriana Campos ◽  
Luis Rojas ◽  
Gilberto Castañeda-Hernández ◽  
...  

A novel bifunctional non-natural tetrapeptide, Met-Asp-d-Trp-Aib, is capable of binding copper, competing with amyloid-beta peptide (Aβ) for Cu(ii), and modulating Aβ aggregation. The study of this tetrapeptide provides further insights into the role of Cu(ii) in the Aβ aggregation pathway, and into the design of compounds with therapeutic potential for Alzheimer's disease.


Sign in / Sign up

Export Citation Format

Share Document