scholarly journals Comparative genomics of human Lactobacillus crispatus isolates reveals genes for glycosylation and glycogen degradation: Implications for in vivo dominance of the vaginal microbiota

2018 ◽  
Author(s):  
Charlotte van der Veer ◽  
Rosanne Hertzberger ◽  
Sylvia Bruisten ◽  
Hanne Tytgat ◽  
Jorne Swanenburg ◽  
...  

Background: A vaginal microbiota dominated by lactobacilli (particularly Lactobacillus crispatus) is associated with vaginal health, whereas a vaginal microbiota not dominated by lactobacilli is considered dysbiotic. Here we investigated whether L. crispatus strains isolated from the vaginal tract of women with Lactobacillus-dominated vaginal microbiota (LVM) are pheno- or genotypically distinct from L. crispatus strains isolated from vaginal samples with dysbiotic vaginal microbiota (DVM). Results: We studied 33 L. crispatus strains (n=16 from LVM; n=17 from DVM). Comparison of these two groups of strains showed that, although strain differences existed, both groups were heterofermentative, produced similar amounts of organic acids, inhibited Neisseria gonorrhoeae growth and did not produce biofilms. Comparative genomics analyses of 28 strains (n=12 LVM; n=16 DVM) revealed a novel, 3-fragmented glycosyltransferase gene that was more prevalent among strains isolated from DVM. Most L. crispatus strains showed growth on glycogen-supplemented growth media. Strains that showed less efficient (n=6) or no (n=1) growth on glycogen all carried N-terminal deletions (respectively, 29 and 37 amino acid-deletions) in a putative pullulanase type I gene. Discussion: L. crispatus strains isolated from LVM were not phenotypically distinct from L. crispatus strains isolated from DVM, however, the finding that the latter were more likely to carry a 3-fragmented glycosyltransferase gene may indicate a role for cell surface glycoconjugates, which may shape vaginal microbiota-host interactions. Furthermore, the observation that variation in the pullulanase type I gene associated with growth on glycogen discourages previous claims that L. crispatus cannot directly utilize glycogen.

Microbiome ◽  
2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Charlotte van der Veer ◽  
Rosanne Y. Hertzberger ◽  
Sylvia M. Bruisten ◽  
Hanne L. P. Tytgat ◽  
Jorne Swanenburg ◽  
...  

2011 ◽  
Vol 208 (1) ◽  
pp. 195-212 ◽  
Author(s):  
Emily E. Rosowski ◽  
Diana Lu ◽  
Lindsay Julien ◽  
Lauren Rodda ◽  
Rogier A. Gaiser ◽  
...  

NF-κB is an integral component of the immune response to Toxoplasma gondii. Although evidence exists that T. gondii can directly modulate the NF-κB pathway, the parasite-derived effectors involved are unknown. We determined that type II strains of T. gondii activate more NF-κB than type I or type III strains, and using forward genetics we found that this difference is a result of the polymorphic protein GRA15, a novel dense granule protein which T. gondii secretes into the host cell upon invasion. A GRA15-deficient type II strain has a severe defect in both NF-κB nuclear translocation and NF-κB–mediated transcription. Furthermore, human cells expressing type II GRA15 also activate NF-κB, demonstrating that GRA15 alone is sufficient for NF-κB activation. Along with the rhoptry protein ROP16, GRA15 is responsible for a large part of the strain differences in the induction of IL-12 secretion by infected mouse macrophages. In vivo bioluminescent imaging showed that a GRA15-deficient type II strain grows faster compared with wild-type, most likely through its reduced induction of IFN-γ. These results show for the first time that a dense granule protein can modulate host signaling pathways, and dense granule proteins can therefore join rhoptry proteins in T. gondii’s host cell–modifying arsenal.


1998 ◽  
Vol 337 (1) ◽  
pp. 59-65 ◽  
Author(s):  
Dae Kee LEE ◽  
Javier CARRASCO ◽  
Juan HIDALGO ◽  
Glen K. ANDREWS

Mechanisms of regulation of mouse metallothionein (MT)-I gene expression in response to bacterial endotoxin-lipopolysaccharide (LPS) were examined. Northern blot analysis of hepatic MT-I mRNA in interleukin (IL)-6 or tumour necrosis factor (TNF)-receptor type I knock-out mice demonstrated that IL-6, not TNF-α, is of central importance in mediating hepatic MT-I gene expression in vivo after LPS injection. In vivo genomic footprinting of the MT-I promoter demonstrated a rapid increase, after LPS injection, in the protection of several guanine residues in the -250 to -300 bp region of the MT-I promoter. The protected bases were within sequences which resemble binding sites for the signal transducers and activators of transcription (STAT) transcription factor family. Electrophoretic mobility-shift assays using oligonucleotides from footprinted MT-I promoter regions showed that injection of LPS resulted in a rapid increase in the specific, high-affinity, in vitro binding of STAT1 and STAT3 to a binding site at -297 bp (TTCTCGTAA). Western blotting of hepatic nuclear proteins showed that the time-course for changes of total nuclear STAT1 and STAT3 after LPS injection paralleled the increased complex formation in vitro using this oligonucleotide, and binding was specifically competed for by a functional STAT-binding site from the rat α2-macroglobulin promoter. Furthermore, the MT-I promoter -297 bp STAT-binding site conferred IL-6 responsiveness in the context of a minimal promoter in transient transfection assays using HepG2 cells. This study suggests that the effects of LPS on hepatic MT-I gene expression are mediated by IL-6 and involve the activation of STAT-binding to the proximal promoter.


2001 ◽  
Vol 12 (12) ◽  
pp. 2701-2710
Author(s):  
Fadi Fakhouri ◽  
Sandrine Placier ◽  
Raymond Ardaillou ◽  
Jean-Claude Dussaule ◽  
Christos Chatziantoniou

ABSTRACT. Hypertension is frequently associated with the development of renal vascular fibrosis. This pathophysiologic process is due to the abnormal formation of extracellular matrix proteins, mainly collagen type I. In previous studies, it has been observed that the pharmacologic blockade of angiotensin II (Ang II) or endothelin (ET) blunted the development of glomerulo- and nephroangiosclerosis in nitric oxide-deficient hypertensive animals by inhibiting collagen I gene activation. The purpose of this study was to investigate whether and how AngII interacts with ET to activate the collagen I gene and whether transforming growth factor-β (TGF-β) could be a player in this interaction. Experiments were performedin vivoon transgenic mice harboring the luciferase gene under the control of the collagen I-α2 chain promoter (procolα2[I]). Bolus intravenous administration of AngII or ET produced a rapid, dose-dependent activation of collagen I gene in aorta and renal cortical slices (threefold increase over control at 2 h,P< 0.01). The AngII-induced effect on procolα2(I) was completely inhibited by candesartan (AngII type 1 receptor antagonist) and substantially blunted by bosentan (dual ET receptor antagonist) (P< 0.01), whereas the ET-induced activation of collagen I gene was blocked only by bosentan. In subsequent experiments, TGF-β (also administered intravenously) produced a rapid increase of procolα2(I) in aorta and renal cortical slices (twofold increase over control at 1 h,P< 0.01) that was completely blocked by decorin (scavenger of the active form of TGF-β). In addition, decorin attenuated the activation of collagen I gene produced by AngII (P< 0.01). These data indicate that AngII can activate collagen I gene in aorta and renal cortexin vivoby a mechanism(s) requiring participation and/or cooperation of ET and TGF-β.


2020 ◽  
pp. 40-50
Author(s):  
A. Nikitina

Analysis of literature data presented in search engines — Elibrary, PubMed, Cochrane — concerning the risk of developing type I allergic reactions in patients with blood diseases is presented. It is shown that the most common cause of type I allergic reactions is drugs included in the treatment regimens of this category of patients. The article presents statistics on the increase in the number of drug allergies leading to cases of anaphylactic shock in patients with blood diseases. Modern methods for the diagnosis of type I allergic reactions in vivo and in vitro are considered.


2021 ◽  
Vol 8 (3) ◽  
pp. 39
Author(s):  
Britani N. Blackstone ◽  
Summer C. Gallentine ◽  
Heather M. Powell

Collagen is a key component of the extracellular matrix (ECM) in organs and tissues throughout the body and is used for many tissue engineering applications. Electrospinning of collagen can produce scaffolds in a wide variety of shapes, fiber diameters and porosities to match that of the native ECM. This systematic review aims to pool data from available manuscripts on electrospun collagen and tissue engineering to provide insight into the connection between source material, solvent, crosslinking method and functional outcomes. D-banding was most often observed in electrospun collagen formed using collagen type I isolated from calfskin, often isolated within the laboratory, with short solution solubilization times. All physical and chemical methods of crosslinking utilized imparted resistance to degradation and increased strength. Cytotoxicity was observed at high concentrations of crosslinking agents and when abbreviated rinsing protocols were utilized. Collagen and collagen-based scaffolds were capable of forming engineered tissues in vitro and in vivo with high similarity to the native structures.


2021 ◽  
Vol 12 ◽  
pp. 204173142199975
Author(s):  
Jihyun Kim ◽  
Kyoung-Mi Lee ◽  
Seung Hwan Han ◽  
Eun Ae Ko ◽  
Dong Suk Yoon ◽  
...  

Patients with diabetes experience impaired growth factor production such as epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF), and they are reportedly involved in wound healing processes. Here, we report dual growth factor-loaded hyaluronate collagen dressing (Dual-HCD) matrix, using different ratios of the concentration of stabilized growth factors—stabilized-EGF (S-EGF) and stabilized-bFGF (S-bFGF). At first, the optimal concentration ratio of S-EGF to S-bFGF in the Dual-HCD matrix is determined to be 1:2 in type I diabetic mice. This Dual-HCD matrix does not cause cytotoxicity and can be used in vivo. The wound-healing effect of this matrix is confirmed in type II diabetic mice. Dual HCD enhances angiogenesis which promotes wound healing and thus, it shows a significantly greater synergistic effect than the HCD matrix loaded with a single growth factor. Overall, we conclude that the Dual-HCD matrix represents an effective therapeutic agent for impaired diabetic wound healing.


2021 ◽  
Vol 22 (5) ◽  
pp. 2685
Author(s):  
Lisa Adams ◽  
Julia Brangsch ◽  
Bernd Hamm ◽  
Marcus R. Makowski ◽  
Sarah Keller

This review outlines recent preclinical and clinical advances in molecular imaging of abdominal aortic aneurysms (AAA) with a focus on molecular magnetic resonance imaging (MRI) of the extracellular matrix (ECM). In addition, developments in pharmacologic treatment of AAA targeting the ECM will be discussed and results from animal studies will be contrasted with clinical trials. Abdominal aortic aneurysm (AAA) is an often fatal disease without non-invasive pharmacologic treatment options. The ECM, with collagen type I and elastin as major components, is the key structural component of the aortic wall and is recognized as a target tissue for both initiation and the progression of AAA. Molecular imaging allows in vivo measurement and characterization of biological processes at the cellular and molecular level and sets forth to visualize molecular abnormalities at an early stage of disease, facilitating novel diagnostic and therapeutic pathways. By providing surrogate criteria for the in vivo evaluation of the effects of pharmacological therapies, molecular imaging techniques targeting the ECM can facilitate pharmacological drug development. In addition, molecular targets can also be used in theranostic approaches that have the potential for timely diagnosis and concurrent medical therapy. Recent successes in preclinical studies suggest future opportunities for clinical translation. However, further clinical studies are needed to validate the most promising molecular targets for human application.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peng Gao ◽  
Xianwei Ma ◽  
Ming Yuan ◽  
Yulan Yi ◽  
Guoke Liu ◽  
...  

AbstractUbiquitination is one of the most prevalent protein posttranslational modifications. Here, we show that E3 ligase Nedd4l positively regulates antiviral immunity by catalyzing K29-linked cysteine ubiquitination of TRAF3. Deficiency of Nedd4l significantly impairs type I interferon and proinflammatory cytokine production induced by virus infection both in vitro and in vivo. Nedd4l deficiency inhibits virus-induced ubiquitination of TRAF3, the binding between TRAF3 and TBK1, and subsequent phosphorylation of TBK1 and IRF3. Nedd4l directly interacts with TRAF3 and catalyzes K29-linked ubiquitination of Cys56 and Cys124, two cysteines that constitute zinc fingers, resulting in enhanced association between TRAF3 and E3 ligases, cIAP1/2 and HECTD3, and also increased K48/K63-linked ubiquitination of TRAF3. Mutation of Cys56 and Cys124 diminishes Nedd4l-catalyzed K29-linked ubiquitination, but enhances association between TRAF3 and the E3 ligases, supporting Nedd4l promotes type I interferon production in response to virus by catalyzing ubiquitination of the cysteines in TRAF3.


Sign in / Sign up

Export Citation Format

Share Document