scholarly journals Comparative genomics of human Lactobacillus crispatus isolates reveals genes for glycosylation and glycogen degradation: implications for in vivo dominance of the vaginal microbiota

Microbiome ◽  
2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Charlotte van der Veer ◽  
Rosanne Y. Hertzberger ◽  
Sylvia M. Bruisten ◽  
Hanne L. P. Tytgat ◽  
Jorne Swanenburg ◽  
...  
2018 ◽  
Author(s):  
Charlotte van der Veer ◽  
Rosanne Hertzberger ◽  
Sylvia Bruisten ◽  
Hanne Tytgat ◽  
Jorne Swanenburg ◽  
...  

Background: A vaginal microbiota dominated by lactobacilli (particularly Lactobacillus crispatus) is associated with vaginal health, whereas a vaginal microbiota not dominated by lactobacilli is considered dysbiotic. Here we investigated whether L. crispatus strains isolated from the vaginal tract of women with Lactobacillus-dominated vaginal microbiota (LVM) are pheno- or genotypically distinct from L. crispatus strains isolated from vaginal samples with dysbiotic vaginal microbiota (DVM). Results: We studied 33 L. crispatus strains (n=16 from LVM; n=17 from DVM). Comparison of these two groups of strains showed that, although strain differences existed, both groups were heterofermentative, produced similar amounts of organic acids, inhibited Neisseria gonorrhoeae growth and did not produce biofilms. Comparative genomics analyses of 28 strains (n=12 LVM; n=16 DVM) revealed a novel, 3-fragmented glycosyltransferase gene that was more prevalent among strains isolated from DVM. Most L. crispatus strains showed growth on glycogen-supplemented growth media. Strains that showed less efficient (n=6) or no (n=1) growth on glycogen all carried N-terminal deletions (respectively, 29 and 37 amino acid-deletions) in a putative pullulanase type I gene. Discussion: L. crispatus strains isolated from LVM were not phenotypically distinct from L. crispatus strains isolated from DVM, however, the finding that the latter were more likely to carry a 3-fragmented glycosyltransferase gene may indicate a role for cell surface glycoconjugates, which may shape vaginal microbiota-host interactions. Furthermore, the observation that variation in the pullulanase type I gene associated with growth on glycogen discourages previous claims that L. crispatus cannot directly utilize glycogen.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4538
Author(s):  
Scarlett Puebla-Barragan ◽  
Emiley Watson ◽  
Charlotte van der Veer ◽  
John A. Chmiel ◽  
Charles Carr ◽  
...  

Lactobacillus crispatus is the dominant species in the vagina of many women. With the potential for strains of this species to be used as a probiotic to help prevent and treat dysbiosis, we investigated isolates from vaginal swabs with Lactobacillus-dominated and a dysbiotic microbiota. A comparative genome analysis led to the identification of metabolic pathways for synthesis and degradation of three major biogenic amines in most strains. However, targeted metabolomic analysis of the production and degradation of biogenic amines showed that certain strains have either the ability to produce or to degrade these compounds. Notably, six strains produced cadaverine, one produced putrescine, and two produced tyramine. These biogenic amines are known to raise vaginal pH, cause malodour, and make the environment more favourable to vaginal pathogens. In vitro experiments confirmed that strains isolated from women with a dysbiotic vaginal microbiota have higher antimicrobial effects against the common urogenital pathogens Escherichia coli and Enterococcus faecium. The results indicate that not all L. crispatus vaginal strains appear suitable for probiotic application and the basis for selection should not be only the overall composition of the vaginal microbiota of the host from which they came, but specific biochemical and genetic traits.


2015 ◽  
Vol 5 (9) ◽  
pp. 1889-1897 ◽  
Author(s):  
Amanda L. Hughes ◽  
Oliver J. Rando
Keyword(s):  

Author(s):  
Ping Li ◽  
Kehong Wei ◽  
Xia He ◽  
Lu Zhang ◽  
Zhaoxia Liu ◽  
...  

BackgroundThe vaginal microbiota is associated with the health of the female reproductive system and the offspring. Lactobacillus crispatus belongs to one of the most important vaginal probiotics, while its role in the agglutination and immobilization of human sperm, fertility, and offspring health is unclear.MethodsAdherence assays, sperm motility assays, and Ca2+-detecting assays were used to analyze the adherence properties and sperm motility of L. crispatus Lcr-MH175, attenuated Salmonella typhimurium VNP20009, engineered S. typhimurium VNP20009 DNase I, and Escherichia coli O157:H7 in vitro. The rat reproductive model was further developed to study the role of L. crispatus on reproduction and offspring health, using high-throughput sequencing, real-time PCR, and molecular biology techniques.ResultsOur results indicated that L. crispatus, VNP20009, VNP20009 DNase I, and E. coli O157:H7 significantly inhibited the sperm motility in vitro via adversely affecting the sperm intracellular Ca2+ concentration and showed a high adhesion to sperms. The in vivo results indicated that L. crispatus and other tested bacteria greatly reduced the pregnancy rates, but L. crispatus had a positive effect on maternal health and offspring development. Moreover, the transplantation of L. crispatus could sustain a normal bacterial composition of the vaginal microbiota in healthy rats and markedly reduced the expression of uterine inflammatory factors (toll-like receptor-4/nuclear factor kappa-B, tumor necrosis factor-α, production of interleukin-1β, etc.) and apoptosis factors (Fas Ligand, Bcl-2-associated X protein/B cell lymphoma-2, etc.) compared with the other tested strains.ConclusionOur study demonstrated that the vaginal probiotic L. crispatus greatly affected the sperm activity and could also reduce pregnancies through its adhesion property, which might account for some unexplained infertility. Therefore, more caution should be paid when using L. crispatus as a vaginal viable preparation in women of child-bearing age, especially for women whose partners have abnormal sperms.


mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Michael Knopp ◽  
Jonina S. Gudmundsdottir ◽  
Tobias Nilsson ◽  
Finja König ◽  
Omar Warsi ◽  
...  

ABSTRACTThe origin of novel genes and beneficial functions is of fundamental interest in evolutionary biology. New genes can originate from different mechanisms, including horizontal gene transfer, duplication-divergence, andde novofrom noncoding DNA sequences. Comparative genomics has generated strong evidence forde novoemergence of genes in various organisms, but experimental demonstration of this process has been limited to localized randomization in preexisting structural scaffolds. This bypasses the basic requirement ofde novogene emergence, i.e., lack of an ancestral gene. We constructed highly diverse plasmid libraries encoding randomly generated open reading frames and expressed them inEscherichia colito identify short peptides that could confer a beneficial and selectable phenotypein vivo(in a living cell). Selections on antibiotic-containing agar plates resulted in the identification of three peptides that increased aminoglycoside resistance up to 48-fold. Combining genetic and functional analyses, we show that the peptides are highly hydrophobic, and by inserting into the membrane, they reduce membrane potential, decrease aminoglycoside uptake, and thereby confer high-level resistance. This study demonstrates that randomized DNA sequences can encode peptides that confer selective benefits and illustrates how expression of random sequences could spark the origination of new genes. In addition, our results also show that this question can be addressed experimentally by expression of highly diverse sequence libraries and subsequent selection for specific functions, such as resistance to toxic compounds, the ability to rescue auxotrophic/temperature-sensitive mutants, and growth on normally nonused carbon sources, allowing the exploration of many different phenotypes.IMPORTANCEDe novogene origination from nonfunctional DNA sequences was long assumed to be implausible. However, recent studies have shown that large fractions of genomic noncoding DNA are transcribed and translated, potentially generating new genes. Experimental validation of this process so far has been limited to comparative genomics,in vitroselections, or partial randomizations. Here, we describe selection of novel peptidesin vivousing fully random synthetic expression libraries. The peptides confer aminoglycoside resistance by inserting into the bacterial membrane and thereby partly reducing membrane potential and decreasing drug uptake. Our results show that beneficial peptides can be selected from random sequence poolsin vivoand support the idea that expression of noncoding sequences could spark the origination of new genes.


2009 ◽  
Vol 2009 ◽  
pp. 1-6 ◽  
Author(s):  
Caroline Mitchell ◽  
Carla Moreira ◽  
David Fredricks ◽  
Kathleen Paul ◽  
Angela M. Caliendo ◽  
...  

Background. Fastidious bacteria have been associated with bacterial vaginosis (BV) using PCR methods. We assessed the prevalence of these bacteria in HIV-1 infected women and their relationship with vaginal pH and shedding of HIV-1 RNA.Methods. 64 cervicovaginal lavage (CVL) samples were collected from 51 women. Vaginal microbiota were characterized using 8 bacterium-specific quantitative PCR assays.Results. Women with the fastidious bacteria Bacterial Vaginosis Associated Bacterium (BVAB) 1, 2, and 3 showed a trend to increased HIV-1 shedding (OR 2.59–3.07,P=.14–.17). Absence ofLactobacillus crispatus(P<.005) and presence of BVAB2 (P<.001) were associated with elevated vaginal pH. BVAB1, 2, and 3 were highly specific indicators of BV in HIV-infected women, with specificities of 89%–93%.Conclusions. Fastidious bacteria (BVAB 1, 2, and 3) remain specific indicators of BV in HIV-infected women, and BVAB2 may contribute to the elevated vaginal pH that is a hallmark of this syndrome.


2021 ◽  
Vol 87 (8) ◽  
Author(s):  
Leonardo Mancabelli ◽  
Walter Mancino ◽  
Gabriele Andrea Lugli ◽  
Christian Milani ◽  
Alice Viappiani ◽  
...  

ABSTRACT The vaginal microbiota is defined as the community of bacteria residing in the human vaginal tract. Recent studies have demonstrated that the vaginal microbiota is dominated by members of the Lactobacillus genus, whose relative abundance and microbial taxon composition are dependent on the healthy status of this human body site. Particularly, among members of this genus, the high prevalence of Lactobacillus crispatus is commonly associated with a healthy vaginal environment. In the current study, we assessed the microbial composition of 94 healthy vaginal microbiome samples through shotgun metagenomics analyses. Based on our results, we observed that L. crispatus was the most representative species and correlated negatively with bacteria involved in vaginal infections. Therefore, we isolated 15 L. crispatus strains from different environments in which this species abounds, ranging from vaginal swabs of healthy women to chicken fecal samples. The genomes of these strains were decoded and their genetic content was analyzed and correlated with their physiological features. An extensive comparative genomic analysis encompassing all publicly available genome sequences of L. crispatus and combined with those decoded in this study revealed a genetic adaptation of strains to their respective ecological niche. In addition, in vitro growth experiments involving all isolated L. crispatus strains, together with a synthetic vaginal microbiota, reveal how this species is able to modulate the composition of the vaginal microbial consortia at the strain level. Overall, our findings suggest that L. crispatus plays an important ecological role in reducing the complexity of the vaginal microbiota by depleting pathogenic bacteria. IMPORTANCE The vaginal microbiota is defined as the community of bacteria residing in the human vaginal tract. Recent studies have demonstrated that the high prevalence of Lactobacillus crispatus strains is commonly associated with a healthy vaginal environment. In the current study, we assessed the microbial composition of 94 public healthy vaginal samples through shotgun metagenomics analyses. Results showed that L. crispatus was the most representative species and correlated negatively with bacteria involved in vaginal infections. Moreover, we isolated and sequenced the genomes of new L. crispatus strains from different environments, and the comparative genomics analysis revealed a genetic adaptation of strains to their ecological niche. In addition, in vitro growth experiments display the capability of this species to modulate the composition of the vaginal microbial consortia. Overall, our findings suggest an ecological role exploited by L. crispatus in reducing the complexity of the vaginal microbiota toward a depletion of pathogenic bacteria.


2021 ◽  
Author(s):  
Seth M Bloom ◽  
Nomfuneko A Mafunda ◽  
Benjamin M Woolston ◽  
Matthew R Hayward ◽  
Josephine F Frempong ◽  
...  

Vaginal microbiota composition affects several important reproductive health outcomes. Lactobacillus crispatus-dominant bacterial communities have favorable associations whereas anaerobe-dominant communities deficient of lactobacilli are linked to poor outcomes, including bacterial vaginosis (BV). Lactobacillus iners, the most abundant vaginal species worldwide, has adverse associations compared to L. crispatus, but standard metronidazole treatment for BV promotes L. iners-dominance, likely contributing to post-treatment relapse. L. iners is under-studied because it fails to grow in standard Lactobacillus media in vitro. Here we trace this in vitro phenotype to a species-specific cysteine requirement associated with limitations in cysteine-related transport mechanisms and show that vaginal cysteine concentrations correlate with Lactobacillus abundance in vivo. We demonstrate that cystine uptake inhibitors selectively impede L. iners growth and that combining an inhibitor with metronidazole thus promotes L. crispatus dominance of defined BV-like communities. These findings identify a novel target for therapeutic vaginal microbiota modulation to improve reproductive health.


Sign in / Sign up

Export Citation Format

Share Document