scholarly journals Effects of 5-aza-2’-deoxycytidine on human osteoarthritic chondrocytes

2018 ◽  
Author(s):  
Shirin Kadler ◽  
Özlem Vural ◽  
Luzia Reiners-Schramm ◽  
Roland Lauster ◽  
Mark Rosowski

AbstractBackgroundGiven regenerative therapies, the utilization of primary human cells is desired and requested in the development of in vitro systems and disease models. After a few passages in vitro, all cells from the connective tissue end up in a similar fibroblastoid cell type marked by loss of the specific expression pattern. It is still under discussion whether different de-differentiated mesenchymal cells have similar or identical differentiation capacities in vitro.MethodsChondrocytes isolated from patients with late-stage osteoarthritis were cultured for several passages until de-differentiation was completed. The mRNA level of cartilage markers was investigated, and the adipogenic, osteogenic and chondrogenic differentiation capacity was examined. By adding 5-aza-2’-deoxycytidine (5-aza-dC) to the media, the influence of DNA methylation on the differentiation capacity was analyzed.ResultsThe chondrocytes used in this work were not affected by the loss of specific gene expression upon cell culture. The mRNA levels of SOX5, SOX6, SOX9, aggrecan, and proteoglycan-4 remained unchanged. The underlying mechanisms of cartilage marker maintenance in osteoarthritic (OA) chondrocytes were investigated with a focus on the epigenetic modification by DNA methylation. The treatment of de-differentiated chondrocytes with the DNA methyltransferase inhibitor 5-aza-2’-deoxycytidine (5-aza-dC) displayed no appreciable impact on the observed maintenance of marker gene expression, while the chondrogenic differentiation capacity was compromised. On the other hand, the pre-cultivation with 5-aza-dC improved the osteogenesis and adipogenesis of OA chondrocytes. Contradictory to these effects, the DNA methylation levels were not reduced after treatment with 1 μM 5-aza-dC for four weeks.ConclusionChondrocytes isolated from late-stage osteoarthritic patients represents a reliable cell source for in vitro studies as wells as disease models since the chondrogenic differentiation potential remains. 5-aza-2’-deoxycytidine could not further improve their chondrogenic potential.

2018 ◽  
Vol 314 (3) ◽  
pp. G309-G318 ◽  
Author(s):  
Anoop Kumar ◽  
Pooja Malhotra ◽  
Hayley Coffing ◽  
Shubha Priyamvada ◽  
Arivarasu N. Anbazhagan ◽  
...  

Na+/H+ exchanger-3 (NHE3) is crucial for intestinal Na+ absorption, and its reduction has been implicated in infectious and inflammatory bowel diseases (IBD)-associated diarrhea. Epigenetic mechanisms such as DNA methylation are involved in the pathophysiology of IBD. Whether changes in DNA methylation are involved in modulating intestinal NHE3 gene expression is not known. Caco-2 and HuTu 80 cells were used as models of human intestinal epithelial cells. Normal C57/BL6, wild-type, or growth arrest and DNA damage-inducible 45b (GADD45b) knockout (KO) mice were used as in vivo models. NHE3 gene DNA methylation levels were assessed by MBDCap (MethyMiner) assays. Results demonstrated that in vitro methylation of NHE3 promoter construct (p-1509/+127) cloned into a cytosine guanine dinucleotide-free lucia vector decreased the promoter activity in Caco-2 cells. DNA methyltransferase inhibitor 5-azacytidine (10 μM, 24 h) caused a significant decrease in DNA methylation of the NHE3 gene and concomitantly increased NHE3 expression in Caco-2 cells. Similarly, 5-azacytidine treatment increased NHE3 mRNA levels in HuTu 80 cells. 5-Azacytidine treatment for 3 wk (10 mg/kg body wt ip, 3 times/wk) also resulted in an increase in NHE3 expression in the mouse ileum and colon. Small-interfering RNA knockdown of GADD45b (protein involved in DNA demethylation) in Caco-2 cells decreased NHE3 mRNA expression. Furthermore, there was a significant decrease in NHE3 mRNA and protein expression in the ileum and colon of GADD45b KO mice. Our findings demonstrate that NHE3 gene expression is regulated by changes in its DNA methylation. NEW & NOTEWORTHY Our studies for the first time demonstrate that Na+/H+ exchanger-3 gene expression is regulated by an epigenetic mechanism involving DNA methylation.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Federico Tinarelli ◽  
Elena Ivanova ◽  
Ilaria Colombi ◽  
Erica Barini ◽  
Edoardo Balzani ◽  
...  

Abstract Background DNA methylation has emerged as an important epigenetic regulator of brain processes, including circadian rhythms. However, how DNA methylation intervenes between environmental signals, such as light entrainment, and the transcriptional and translational molecular mechanisms of the cellular clock is currently unknown. Here, we studied the after-hours mice, which have a point mutation in the Fbxl3 gene and a lengthened circadian period. Methods In this study, we used a combination of in vivo, ex vivo and in vitro approaches. We measured retinal responses in Afh animals and we have run reduced representation bisulphite sequencing (RRBS), pyrosequencing and gene expression analysis in a variety of brain tissues ex vivo. In vitro, we used primary neuronal cultures combined to micro electrode array (MEA) technology and gene expression. Results We observed functional impairments in mutant neuronal networks, and a reduction in the retinal responses to light-dependent stimuli. We detected abnormalities in the expression of photoreceptive melanopsin (OPN4). Furthermore, we identified alterations in the DNA methylation pathways throughout the retinohypothalamic tract terminals and links between the transcription factor Rev-Erbα and Fbxl3. Conclusions The results of this study, primarily represent a contribution towards an understanding of electrophysiological and molecular phenotypic responses to external stimuli in the Afh model. Moreover, as DNA methylation has recently emerged as a new regulator of neuronal networks with important consequences for circadian behaviour, we discuss the impact of the Afh mutation on the epigenetic landscape of circadian biology.


2021 ◽  
Vol 11 (8) ◽  
pp. 738
Author(s):  
Melissa D. Mercado-Rubio ◽  
Erick Pérez-Argueta ◽  
Alejandro Zepeda-Pedreguera ◽  
Fernando J. Aguilar-Ayala ◽  
Ricardo Peñaloza-Cuevas ◽  
...  

Dental tissue-derived mesenchymal stem cells (DT-MSCs) are a promising resource for tissue regeneration due to their multilineage potential. Despite accumulating data regarding the biology and differentiation potential of DT-MSCs, few studies have investigated their adipogenic capacity. In this study, we have investigated the mesenchymal features of dental pulp stem cells (DPSCs), as well as the in vitro effects of different adipogenic media on these cells, and compared them to those of periodontal ligament stem cells (PLSCs) and dental follicle stem cells (DFSCs). DFSC, PLSCs, and DPSCs exhibit similar morphology and proliferation capacity, but they differ in their self-renewal ability and expression of stemness markers (e.g OCT4 and c-MYC). Interestingly, DFSCs and PLSCs exhibited more lipid accumulation than DPSCs when induced to adipogenic differentiation. In addition, the mRNA levels of adipogenic markers (PPAR, LPL, and ADIPOQ) were significantly higher in DFSCs and PLSCs than in DPSCs, which could be related to the differences in the adipogenic commitment in those cells. These findings reveal that the adipogenic capacity differ among DT-MSCs, features that might be advantageous to increasing our understanding about the developmental origins and regulation of adipogenic commitment.


Endocrinology ◽  
1997 ◽  
Vol 138 (3) ◽  
pp. 1224-1231 ◽  
Author(s):  
Ursula B. Kaiser ◽  
Andrzej Jakubowiak ◽  
Anna Steinberger ◽  
William W. Chin

Abstract The hypothalamic hormone, GnRH, is released and transported to the anterior pituitary in a pulsatile manner, where it binds to specific high-affinity receptors and regulates gonadotropin biosynthesis and secretion. The frequency of GnRH pulses changes under various physiological conditions, and varying GnRH pulse frequencies have been shown to regulate differentially the secretion of LH and FSH and the expression of the gonadotropin α, LHβ, and FSHβ subunit genes in vivo. We demonstrate differential effects of varying GnRH pulse frequency in vitro in superfused primary monolayer cultures of rat pituitary cells. Cells were treated with 10 nm GnRH pulses for 24 h at a frequency of every 0.5, 1, 2, or 4 h. α, LHβ, and FSHβ messenger RNA (mRNA) levels were increased by GnRH at all pulse frequencies. α and LHβ mRNA levels and LH secretion were stimulated to the greatest extent at a GnRH pulse frequency of every 30 min, whereas FSHβ mRNA levels and FSH secretion were stimulated maximally at a lower GnRH pulse frequency, every 2 h. GnRH receptor (GnRHR) mRNA levels also were increased by GnRH at all pulse frequencies and were stimulated maximally at a GnRH pulse frequency of every 30 min. Similar results were obtained when the dose of each pulse of GnRH was adjusted to maintain a constant total cumulative dose of GnRH over 24 h. These data show that gonadotropin subunit gene expression is regulated differentially by varying GnRH pulse frequencies in vitro, suggesting that the differential effects of varying GnRH pulse frequencies on gonadotropin subunit gene expression occur directly at the level of the pituitary. The pattern of regulation of GnRHR mRNA levels correlated with that of α and LHβ but was different from that of FSHβ. This suggests that α and LHβ mRNA levels are maximally stimulated when GnRHR levels are relatively high, whereas FSHβ mRNA levels are maximally stimulated at lower levels of GnRHR expression, and that the mechanism for differential regulation of the gonadotropins by varying pulse frequencies of GnRH may involve levels of GnRHR. Furthermore, these data suggest that the mechanisms whereby varying GnRH pulse frequencies stimulate α, LHβ, and GnRHR gene expression are similar, whereas the stimulation of FSHβ mRNA levels may be different.


2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Alex Sotolongo ◽  
Yi-Zhou Jiang ◽  
John Karanian ◽  
William Pritchard ◽  
Peter Davies

Objective: One of the first clinically detectable changes in the vasculature during atherogenesis is the accumulation of cholesterol within the vessel wall. Hypercholesterolemia is characterized by dysfunctional endothelial-dependent vessel relaxation and impaired NOS3 function. Since DNA methylation at gene promoter regions strongly suppresses gene expression, we postulated that high-fat/high-cholesterol diet suppresses endothelial NOS3 through promoter DNA methylation. Methods: Domestic male pigs were fed control diet (CD) or isocaloric high fat and high cholesterol diet (HC; 12% fat and 1.5% cholesterol) for 2, 4, 8 or 12 weeks prior to tissue collection. Furthermore, to determine the effects of risk factor withdrawal, an additional group of swine received HC for 12 weeks and then CD for 8 weeks; a control group received HC continuously for 20 weeks. Endothelial cells were harvested from common carotid aorta. In parallel in vitro studies, cultured human aortic endothelial cells (HAEC) were treated with human LDL, GW3956 (LXR agonist) and RG108 (DNA methyltransferase [DNMT] inhibitor). In cells from both sources, DNA methylation at the NOS3 promoter was measured using methylation specific pyro sequencing, and endothelial gene expression was measured using RT PCR. Results: HC diet increased plasma cholesterol level from 75 mg/dl on CD to a plateau of about 540 mg/dl within 2 weeks. Endothelial NOS3 expression was significantly reduced (71±9 % of CD) after 4 weeks of HC, a level sustained at subsequent time points. Withdrawal of HC for 8 weeks did not recover NOS3 expression. After 12-week HC, the NOS3 promoter was hypermethylated. Withdrawal of HC did not reverse NOS3 promoter methylation. In vitro treatment of HAEC with human LDL (200 mg/dl total cholesterol) or GW3956 (5μM) suppressed NOS3 mRNA to 50% and 30% respectively, suggesting that LXR/RXR is involved in suppression of NOS3. Nitric oxide production was consistently suppressed by GW3959. Both could be reversed through inhibition of DNMTs by RG108. Conclusions: DNA methylation and LXR/RXR pathway can mediate the HC-suppression of endothelial NOS3. The study identifies novel pharmaceutical targets in treating endothelial dysfunction. Crosstalk between these pathways is under investigation.


Epigenomics ◽  
2021 ◽  
Author(s):  
Beatriz Garcia-Ruiz ◽  
Manuel Castro de Moura ◽  
Gerard Muntané ◽  
Lourdes Martorell ◽  
Elena Bosch ◽  
...  

Aim: To investigate DDR1 methylation in the brains of bipolar disorder (BD) patients and its association with DDR1 mRNA levels and comethylation with myelin genes. Materials & methods: Genome-wide profiling of DNA methylation (Infinium MethylationEPIC BeadChip) corrected for glial composition and DDR1 gene expression analysis in the occipital cortices of individuals with BD (n = 15) and healthy controls (n = 15) were conducted. Results: DDR1 5-methylcytosine levels were increased and directly associated with DDR1b mRNA expression in the brains of BD patients. We also observed that DDR1 was comethylated with a group of myelin genes. Conclusion: DDR1 is hypermethylated in BD brain tissue and is associated with isoform expression. Additionally, DDR1 comethylation with myelin genes supports the role of this receptor in myelination.


2000 ◽  
Vol 113 (3) ◽  
pp. 555-566 ◽  
Author(s):  
J. Lake ◽  
J. Rathjen ◽  
J. Remiszewski ◽  
P.D. Rathjen

We have undertaken an in vitro differentiation analysis of two related, interconvertible, pluripotent cell populations, ES and early primitive ectoderm-like (EPL) cells, which are most similar in morphology, gene expression, cytokine responsiveness and differentiation potential in vivo to ICM and early primitive ectoderm, respectively. Pluripotent cells were differentiated in vitro as aggregates (embryoid bodies) and the appearance and abundance of cell lineages were assessed by morphology and gene expression. Differentiation in EPL cell embryoid bodies recapitulated normal developmental progression in vivo, but was advanced in comparison to ES cell embryoid bodies, with the rapid establishment of late primitive ectoderm specific gene expression, and subsequent loss of pluripotent cell markers. Nascent mesoderm was formed earlier and more extensively in EPL cell embryoid bodies, and resulted in the appearance of terminally differentiated mesodermal cell types prior to and at higher levels than in ES cell embryoid bodies. Nascent mesoderm in EPL cell embryoid bodies was not specified but could be programmed to alternative fates by the addition of exogenous factors. EPL cells remained competent to form primitive endoderm even though this is not the normal fate of primitive ectoderm in vivo. The establishment of primitive ectoderm-like gene expression and inability to participate in embryogenesis following blastocyst injection is therefore not directly associated with restriction in the ability to form extra-embryonic lineages. However, the EPL cell embryoid body environment did not support differentiation of primitive endoderm to visceral endoderm, indicating the lack of an inductive signal for visceral endoderm formation deduced to originate from the pluripotent cells. Similarly, the inability of EPL cells to form neurons when differentiated as embryoid bodies was attributable to perturbation of the differentiation environment and loss of inductive signals rather than a restricted differentiation potential. Reversion of EPL cells to ES cells was accompanied by restoration of ES cell-like differentiation potential. These results demonstrate the ability of pluripotent cells to adopt developmentally distinct, stable cell states with altered differentiation potentials.


2018 ◽  
Vol 13 (1) ◽  
pp. 327-334 ◽  
Author(s):  
Xiaowu Chen ◽  
Yonghua Zhao ◽  
Yudong He ◽  
Jinliang Zhao

AbstractSkewed sex development is prevalent in fish hybrids. However, the histological observation and molecular mechanisms remain elusive. In this study, we showed that the interspecific hybrids of the two fish species, Oreochromis niloticus and Oreochromis aureus, had a male ratio of 98.02%. Microscopic examination revealed that the gonads of both male and female hybrids were developmentally retarded. Compared with the ovaries, the testes of both O. niloticus and hybrids showed higher DNA methylation level in two selected regions in the promoter of cyp19a, the gonadal aromatase gene that converts androgens into estrogens, cyp19a showed higher level gene expression in the ovary than in the testis in both O. niloticus and hybrid tilapia. Methylation and gene expression level of cyp19a were negative correlation between the testis and ovary. Gene transcription was suppressed by the methylation of the cyp19a promoter in vitro. While there is no obvious difference of the methylation level in testis or ovary between O. niloticus and hybrids. Thus, the DNA methylation of the promoter of cyp19a may be an essential component of the sex maintenance, but not a determinant of high male ratio and developmental retardation of gonads in tilapia hybrids.


2019 ◽  
Vol 33 (12) ◽  
pp. 1550-1561 ◽  
Author(s):  
Maria Vittoria Micioni Di Bonaventura ◽  
Mariangela Pucci ◽  
Maria Elena Giusepponi ◽  
Adele Romano ◽  
Catia Lambertucci ◽  
...  

Background:Pharmacological treatment approaches for eating disorders, such as binge eating disorder and bulimia nervosa, are currently limited.Methods and aims:Using a well-characterized animal model of binge eating, we investigated the epigenetic regulation of the A2AAdenosine Receptor (A2AAR) and dopaminergic D2 receptor (D2R) genes.Results:Gene expression analysis revealed a selective increase of both receptor mRNAs in the amygdaloid complex of stressed and restricted rats, which exhibited binge-like eating, when compared to non-stressed and non-restricted rats. Consistently, pyrosequencing analysis revealed a significant reduction of the percentage of DNA methylation but only at the A2AAR promoter region in rats showing binge-like behaviour compared to the control animals. Focusing thus on A2AAR agonist (VT 7) administration (which inhibited the episode of binge systemically at 0.1 mg/kg or intra-central amygdala (CeA) injection at 900 ng/side) induced a significant increase of A2AAR mRNA levels in restricted and stressed rats when compared to the control group. In addition, we observed a significant decrease in A2AAR mRNA levels in rats treated with the A2AAR antagonist (ANR 94) at 1 mg/kg. Consistent changes in the DNA methylation status of the A2AAR promoter were found in restricted and stressed rats after administration of VT 7 or ANR 94.Conclusion:We confirm the role of A2AAR in binge eating behaviours, and we underline the importance of epigenetic regulation of the A2AAR gene, possibly due to a compensatory mechanism to counteract the effect of binge eating. We suggest that A2AAR activation, inducing receptor gene up-regulation, could be relevant to reduction of food consumption.


Animals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 462 ◽  
Author(s):  
George Ramirez ◽  
Jaime Palomino ◽  
Karla Aspee ◽  
Monica De los Reyes

The competence to undergo expansion is a characteristic of cumulus cells (CCs). The aim was to investigate the expression of GDF-9 and BMP-15 mRNA in canine cumulus cells in relation to cumulus expansion and meiotic development over the estrous cycle. CCs were recovered from nonmatured and in vitro-matured (IVM) dog cumulus oocyte complexes (COCs), which were obtained from antral follicles at different phases of the estrous cycle. Quantitative real-time polymerase chain reaction (q-PCR) was used to evaluate the relative abundance of GDF-9 and BMP-15 transcripts from the CCs with or without signs of expansion. The results were evaluated by ANOVA and logistic regression. The maturity of the oocyte and the expansion process affected the mRNA levels in CCs. There were differences (p < 0.05) in GDF-9 and BMP-15 gene expression in CCs isolated from nonmatured COCs when comparing the reproductive phases. Lower mRNA levels (p < 0.05) were observed in anestrus and proestrus in comparison to those in estrus and diestrus. In contrast, when comparing GDF-9 mRNA levels in IVM COCs, no differences were found among the phases of the estrous cycle in expanded and nonexpanded CCs (p < 0.05). However, the highest (p < 0.05) BMP-15 gene expression in CCs that did not undergo expansion was exhibited in anestrus and the lowest (p < 0.05) expression was observed in estrus in expanded CCs. Although the stage of the estrous cycle did not affect the second metaphase (MII )rates, the expanded CCs obtained at estrus coexisted with higher percentages of MII (p < 0.05). In conclusion, the differential expression patterns of GDF-9 and BMP-15 mRNA transcripts might be related to cumulus expansion and maturation processes, suggesting specific regulation and temporal changes in their expression.


Sign in / Sign up

Export Citation Format

Share Document