scholarly journals Concerted 2-5A-Mediated mRNA Decay and Transcription Reprogram Protein Synthesis in dsRNA Response

2018 ◽  
Author(s):  
Sneha Rath ◽  
Eliza Prangley ◽  
Jesse Donovan ◽  
Kaitlin Demarest ◽  
Yigal Meir ◽  
...  

RNA degradation by RNase L during 2-5A-mediated decay (2-5AMD) is a conserved mammalian stress response to viral and endogenous double-stranded RNA (dsRNA). 2-5AMD onsets rapidly and facilitates a switch of protein synthesis from homeostasis to production of interferons (IFNs). To understand the mechanism of this protein synthesis reprogramming, we examined 2-5AMD in human cells. 2-5AMD triggers polysome collapse characteristic of a translation initiation defect, but translation initiation complexes and ribosomes purified from the translation-arrested cells remain functional. Using spike-in RNA-seq we found that basal messenger RNAs (mRNAs) rapidly decay, while mRNAs encoding IFNs and IFN-stimulated genes evade 2-5AMD and accumulate. The IFN evasion results from the combined effect of better mRNA stability and positive feedback amplification in the IFN response. Therefore, 2-5AMD and transcription act in concert to revamp the cellular mRNA composition. The resulting preferential accumulation of innate immune mRNAs establishes 'prioritized' synthesis of defense proteins.

2019 ◽  
Vol 116 (6) ◽  
pp. 2103-2111 ◽  
Author(s):  
Alisha Chitrakar ◽  
Sneha Rath ◽  
Jesse Donovan ◽  
Kaitlin Demarest ◽  
Yize Li ◽  
...  

Cells of all mammals recognize double-stranded RNA (dsRNA) as a foreign material. In response, they release interferons (IFNs) and activate a ubiquitously expressed pseudokinase/endoribonuclease RNase L. RNase L executes regulated RNA decay and halts global translation. Here, we developed a biosensor for 2′,5′-oligoadenylate (2-5A), the natural activator of RNase L. Using this biosensor, we found that 2-5A was acutely synthesized by cells in response to dsRNA sensing, which immediately triggered cellular RNA cleavage by RNase L and arrested host protein synthesis. However, translation-arrested cells still transcribed IFN-stimulated genes and secreted IFNs of types I and III (IFN-β and IFN-λ). Our data suggest that IFNs escape from the action of RNase L on translation. We propose that the 2-5A/RNase L pathway serves to rapidly and accurately suppress basal protein synthesis, preserving privileged production of defense proteins of the innate immune system.


2016 ◽  
Author(s):  
Jesse Donovan ◽  
Sneha Rath ◽  
David Kolet-Mandrikov ◽  
Alexei Korennykh

AbstractDouble-stranded RNA (dsRNA) is a danger signal that triggers endonucleolytic degradation of RNA inside infected and stressed mammalian cells. This mechanism inhibits growth and ultimately removes problematic cells via apoptosis. To elucidate the molecular functions of this program and understand the connection between RNA cleavage and programmed cell death, we visualized dsRNA-induced degradation of human small RNAs using RtcB ligase-assisted RNA sequencing (RtcB RNA-seq). RtcB RNA-seq revealed strong cleavage of select transfer RNAs (tRNAs) and autoantigenic Y-RNAs, and identified the innate immune receptor RNase L as the responsible endoribonuclease. RNase L cleaves the non-coding RNA (ncRNA) targets site-specifically, releasing abundant ncRNA fragments, and downregulating full-length tRNAs and Y-RNAs. The depletion of a single Y-RNA, RNY1, appears particularly important and the loss of this Y-RNA is sufficient to initiate apoptosis. Site-specific cleavage of small ncRNA by RNase L thus emerges as an important terminal step in dsRNA surveillance.


2017 ◽  
Vol 114 (21) ◽  
pp. E4251-E4260 ◽  
Author(s):  
Xufang Deng ◽  
Matthew Hackbart ◽  
Robert C. Mettelman ◽  
Amornrat O’Brien ◽  
Anna M. Mielech ◽  
...  

Coronaviruses are positive-sense RNA viruses that generate double-stranded RNA (dsRNA) intermediates during replication, yet evade detection by host innate immune sensors. Here we report that coronavirus nonstructural protein 15 (nsp15), an endoribonuclease, is required for evasion of dsRNA sensors. We evaluated two independent nsp15 mutant mouse coronaviruses, designated N15m1 and N15m3, and found that these viruses replicated poorly and induced rapid cell death in mouse bone marrow-derived macrophages. Infection of macrophages with N15m1, which expresses an unstable nsp15, or N15m3, which expresses a catalysis-deficient nsp15, activated MDA5, PKR, and the OAS/RNase L system, resulting in an early, robust induction of type I IFN, PKR-mediated apoptosis, and RNA degradation. Immunofluorescence imaging of nsp15 mutant virus-infected macrophages revealed significant dispersal of dsRNA early during infection, whereas in WT virus-infected cells, the majority of the dsRNA was associated with replication complexes. The loss of nsp15 activity also resulted in greatly attenuated disease in mice and stimulated a protective immune response. Taken together, our findings demonstrate that coronavirus nsp15 is critical for evasion of host dsRNA sensors in macrophages and reveal that modulating nsp15 stability and activity is a strategy for generating live-attenuated vaccines.


2018 ◽  
Author(s):  
Alisha Chitrakar ◽  
Sneha Rath ◽  
Jesse Donovan ◽  
Kaitlin Demarest ◽  
Yize Li ◽  
...  

AbstractCells of all mammals recognize double-stranded RNA (dsRNA) as a foreign material. In response, they release interferons (IFNs) and activate a ubiquitously expressed pseudokinase/endoribonuclease RNase L. RNase L executes regulated RNA decay and halts global translation. Here we developed a biosensor for 2’,5’-oligoadenylate (2-5A), the natural activator of RNase L. We found that 2-5A was acutely synthesized by cells in response to dsRNA sensing, which immediately triggered cellular RNA cleavage by RNase L and arrested host protein synthesis. However, translation-arrested cells still transcribed IFN-stimulated genes (ISGs) and secreted IFNs of types I and III (IFN-β and IFN-λ). Our data suggests that IFNs escape from the action of RNase L on translation. We propose that 2-5A/RNase L pathway serves to rapidly and accurately suppress basal protein synthesis, preserving privileged production of defense proteins of the innate immune system.SignificanceRNase L is a mammalian enzyme that can stop global protein synthesis during interferon response. Cells must balance the need to make interferons (which are proteins) with the risk to lose cell-wide translation due to RNase L. This balance can most simply be achieved if RNase L was activated late in the interferon response. However, we show by engineering a biosensor for the RNase L pathway, that on the contrary, RNase L activation precedes interferon synthesis. Further, translation of interferons evades the action of RNase L. Our data suggest that RNase L facilitates a switch of protein synthesis from homeostasis to specific needs of innate immune signaling.


2021 ◽  
Vol 118 (46) ◽  
pp. e2102134118
Author(s):  
Alisha Chitrakar ◽  
Kristina Solorio-Kirpichyan ◽  
Eliza Prangley ◽  
Sneha Rath ◽  
Jin Du ◽  
...  

Double-stranded RNA (dsRNA), a hallmark viral material that activates antiviral interferon (IFN) responses, can appear in human cells also in the absence of viruses. We identify phosphorothioate DNAs (PS DNAs) as triggers of such endogenous dsRNA (endo-dsRNA). PS DNAs inhibit decay of nuclear RNAs and induce endo-dsRNA via accumulation of high levels of intronic and intergenic inverted retroelements (IIIR). IIIRs activate endo-dsRNA responses distinct from antiviral defense programs. IIIRs do not turn on transcriptional RIG-I/MDA5/IFN signaling, but they trigger the dsRNA-sensing pathways of OAS3/RNase L and PKR. Thus, nuclear RNA decay and nuclear-cytosolic RNA sorting actively protect from these innate immune responses to self. Our data suggest that the OAS3/RNase L and PKR arms of innate immunity diverge from antiviral IFN responses and monitor nuclear RNA decay by sensing cytosolic escape of IIIRs. OAS3 provides a receptor for IIIRs, whereas RNase L cleaves IIIR-carrying introns and intergenic RNAs.


2021 ◽  
Vol 118 (16) ◽  
pp. e2022643118
Author(s):  
Yize Li ◽  
David M. Renner ◽  
Courtney E. Comar ◽  
Jillian N. Whelan ◽  
Hanako M. Reyes ◽  
...  

Coronaviruses are adept at evading host antiviral pathways induced by viral double-stranded RNA, including interferon (IFN) signaling, oligoadenylate synthetase–ribonuclease L (OAS-RNase L), and protein kinase R (PKR). While dysregulated or inadequate IFN responses have been associated with severe coronavirus infection, the extent to which the recently emerged SARS-CoV-2 activates or antagonizes these pathways is relatively unknown. We found that SARS-CoV-2 infects patient-derived nasal epithelial cells, present at the initial site of infection; induced pluripotent stem cell-derived alveolar type 2 cells (iAT2), the major cell type infected in the lung; and cardiomyocytes (iCM), consistent with cardiovascular consequences of COVID-19 disease. Robust activation of IFN or OAS-RNase L is not observed in these cell types, whereas PKR activation is evident in iAT2 and iCM. In SARS-CoV-2–infected Calu-3 and A549ACE2 lung-derived cell lines, IFN induction remains relatively weak; however, activation of OAS-RNase L and PKR is observed. This is in contrast to Middle East respiratory syndrome (MERS)-CoV, which effectively inhibits IFN signaling and OAS-RNase L and PKR pathways, but is similar to mutant MERS-CoV lacking innate immune antagonists. Remarkably, OAS-RNase L and PKR are activated in MAVS knockout A549ACE2 cells, demonstrating that SARS-CoV-2 can induce these host antiviral pathways despite minimal IFN production. Moreover, increased replication and cytopathic effect in RNASEL knockout A549ACE2 cells implicates OAS-RNase L in restricting SARS-CoV-2. Finally, while SARS-CoV-2 fails to antagonize these host defense pathways, which contrasts with other coronaviruses, the IFN signaling response is generally weak. These host–virus interactions may contribute to the unique pathogenesis of SARS-CoV-2.


2000 ◽  
Vol 20 (2) ◽  
pp. 617-627 ◽  
Author(s):  
Mihail S. Iordanov ◽  
Jayashree M. Paranjape ◽  
Aimin Zhou ◽  
John Wong ◽  
Bryan R. G. Williams ◽  
...  

ABSTRACT Double-stranded RNA (dsRNA) accumulates in virus-infected mammalian cells and signals the activation of host defense pathways of the interferon system. We describe here a novel form of dsRNA-triggered signaling that leads to the stimulation of the p38 mitogen-activated protein kinase (p38 MAPK) and the c-Jun NH2-terminal kinase (JNK) and of their respective activators MKK3/6 and SEK1/MKK4. The dsRNA-dependent signaling to p38 MAPK was largely intact in cells lacking both RNase L and the dsRNA-activated protein kinase (PKR), i.e., the two best-characterized mediators of dsRNA-triggered antiviral responses. In contrast, activation of both MKK4 and JNK by dsRNA was greatly reduced in cells lacking RNase L (or lacking both RNase L and PKR) but was restored in these cells when introduction of dsRNA was followed by inhibition of ongoing protein synthesis or transcription. These results are consistent with the notion that the role of RNase L and PKR in the activation of MKK4 and JNK is the elimination, via inhibition of protein synthesis, of a labile negative regulator(s) of the signaling to JNK acting upstream of SEK1/MKK4. In the course of these studies, we identified a long-sought site of RNase L-mediated cleavage in the 28S rRNA, which could cause inhibition of translation, thus allowing the activation of JNK by dsRNA. We propose that p38 MAPK is a general participant in dsRNA-triggered cellular responses, whereas the activation of JNK might be restricted to cells with reduced rates of protein synthesis. Our studies demonstrate the existence of alternative (RNase L- and PKR-independent) dsRNA-triggered signaling pathways that lead to the stimulation of stress-activated MAPKs. Activation of p38 MAPK (but not of JNK) was demonstrated in mouse fibroblasts in response to infection with encephalomyocarditis virus (ECMV), a picornavirus that replicates through a dsRNA intermediate. Fibroblasts infected with EMCV (or treated with dsRNA) produced interleukin-6, an inflammatory and pyrogenic cytokine, in a p38 MAPK-dependent fashion. These findings suggest that stress-activated MAPKs participate in mediating inflammatory and febrile responses to viral infections.


2020 ◽  
Author(s):  
Agnes Karasik ◽  
Grant D. Jones ◽  
Andrew V. DePass ◽  
Nicholas R. Guydosh

SUMMARYRibonuclease L (RNase L) is activated as part of the innate immune response and plays an important role in the clearance of viral infections. When activated, it endonucleolytically cleaves both viral and host RNAs, leading to a global reduction in protein synthesis. However, it remains unknown how widespread RNA decay, and consequent changes in the translatome, promote the elimination of viruses. To study how this altered transcriptome is translated, we assayed the global distribution of ribosomes in RNase L activated human cells with ribosome profiling. We found that RNase L activation leads to a substantial increase in the fraction of translating ribosomes in ORFs internal to coding sequences (iORFs) and ORFs within 5’ and 3’ UTRs (uORFs and dORFs). Translation of these alternative ORFs was dependent on RNase L’s cleavage activity, suggesting that mRNA decay fragments are translated to produce short peptides that may be important for antiviral activity.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3176-3176
Author(s):  
Yan Xu ◽  
Mariateresa Fulciniti ◽  
Matthew Ho ◽  
Mehmet Kemal Samur ◽  
Michael A Lopez ◽  
...  

Abstract 14-3-3 proteins are chaperone and scaffold proteins that exert a widespread influence on cellular processes through binding to serine/threonine-phosphorylated residues on target proteins, forcing conformational changes or influencing their interactions with other molecules. Altered 14-3-3 expression is associated with development and progression of cancer. We therefore evaluated the status of all 14-3-3 isoforms in plasma cells disorders in publically available gene expression profiling (GEP) data. Using independent patient datasets, we observed a consistent higher expression of YWHAE (coding gene for the isoform 14-3-3ε) in MM and plasma cell leukemia (PCL) patients, while no consistent differences were observed with the other isoforms. Moreover, we also confirmed higher expression of YWHAE in our RNA-seq data from 420 newly-diagnosed MM patients, with relatively low expression in normal plasma cells. Finally, 14-3-3ε was also found to be constitutively expressed at protein level in primary patient MM cells and in a large panel of MM cell lines, with significantly lower expression in healthy donor B cells. To evaluate if 14-3-3ε represents a functional dependency in MM, we performed genetic perturbation of YWHAE in a panel of MM cell lines. Depletion of YWHAE using 3 different shRNA inhibited cell proliferation and induced cell apoptosis across 5 different cell lines, independently of their genetic background. We next performed CRISPR-Cas9-mediated YWHAE knock out (KO) in H929 and JJN3 cells and observed a significant decrease in cell viability and a robust apoptotic response. H929 YWHAE KO cells infected with FLAG-YWHAE addback lentiviral construct completely rescued this phenotype, confirming that loss of YWHAE is responsible for the defective cell viability and apoptotic phenotype. These observations were corroborated by ectopic overexpression of YWHAE in H929 WT cells that significantly promoted MM cell viability. To elucidate the underlying molecular mechanisms, proteins immunocomplexed co-precipitated with FLAG in H929 KO cells with 14-3-3ε-FLAG addback were analyzed by mass spectrometry. Protein analysis revealed interaction of 14-3-3ε with a large number of proteins, enriched in mTORC1, PI3K-AKT-mTOR and unfolded protein response (UPR) pathway-related genes. Among these, TSC2 and mTORC1 proteins were further studied. WB analysis confirmed interaction of 14-3-3ε with p-mTOR (S2448) and its upstream negative regulator p-TSC2 (S939), while mTORC1 downstream targets, p-p70 S6k and p-4E-BP1, did not interact with 14-3-3ε. WB analysis also revealed activation of TSC2 and consequent inhibition of mTORC1 (via decrease of p-mTOR S2448 levels) in YWHAE KD cells. YWHAE-FLAG addback reversed these effects. Additionally, GEP data in KD cells confirmed a significant impact on mTORC1 pathways. Importantly, YWHAE expression highly correlated (R> 0.8) with genes involved in the mTORC1 pathway, including PSMC4, COPS5, EIF2S2, in our RNA-seq dataset, demonstrating a clinical significance of 14-3-3ε and mTORC1 cooperation in the context of myeloma. One of the most conserved functions of mTORC1 is to promote translation. We therefore assessed the impact of YWHAE on global translational efficiencies in MM cells, and observed significant impact on nascent protein synthesis by YWHAE modulation. 14-3-3ε KD induced 4EBP1 de-phosphorylation through inhibited mTORC1, and concomitantly induced EIF2α phosphorylation. Both effects inhibited translation initiation complex formation, mechanistically supporting a strong protein synthesis arrest. These data show the modulation of several hubs of the signaling apparatus controlling translation initiation in response to YWHAE modulation, ultimately producing a marked protein synthesis inhibition. Deregulated translational control is a central feature of MM. Our findings highlight a unique function for YWHAE as promoter of MM cell survival through regulation of mTOR-dependent protein synthesis and apoptosis. Pharmacological inhibition of YWHAE/14-3-3ε is therefore a possibility to specifically target malignancies with deregulated translational control such as MM. Disclosures Anderson: C4 Therapeutics: Equity Ownership, Other: Scientific founder; Millennium Takeda: Consultancy; Gilead: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Consultancy; OncoPep: Equity Ownership, Other: Scientific founder; Celgene: Consultancy. Munshi:OncoPep: Other: Board of director.


1983 ◽  
Vol 3 (1) ◽  
pp. 64-69
Author(s):  
T W Nilsen ◽  
P A Maroney ◽  
C Baglioni

Interferon induces the synthesis of an enzyme which synthesizes 2',5'-oligoadenylate [2',5'-oligo(A)] when activated by double-stranded RNA. The 2',5'-oligo(A) in turn activates an endonuclease (RNase L). Concentrations of 2',5'-oligo(A) sufficient to activate RNase L are formed in interferon-treated HeLa cells infected with reovirus, and a large fraction of cellular mRNA is degraded (T. W. Nilsen, P. A. Maroney, and C. Baglioni, J. Virol. 42:1039-1045, 1982). We report here that in spite of this mRNA degradation, protein synthesis was not significantly inhibited in these cells. When mRNA synthesis was inhibited with 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole, protein synthesis was markedly decreased, as shown by reduced incorporation of labeled amino acids and a decrease in polyribosomes. This suggested that the turnover of mRNA could be compensated for by increased production of mRNA. The relative concentration of specific mRNAs was measured with cloned cDNA probes. The amount of these mRNAs present in control cells was comparable to that in interferon-treated cells infected with reovirus, whereas it was decreased in the latter cells treated with 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole.


Sign in / Sign up

Export Citation Format

Share Document