scholarly journals Adaptation to developmental diet influences the response to selection on age at reproduction in the fruit fly

2018 ◽  
Author(s):  
Christina M. May ◽  
Joost van den Heuvel ◽  
Agnieszka Doroszuk ◽  
Katja M. Hoedjes ◽  
Thomas Flatt ◽  
...  

AbstractExperimental evolution (EE) is a powerful tool for addressing how environmental factors influence life-history evolution. While in nature different selection pressures experienced across the lifespan shape life histories, EE studies typically apply selection pressures one at a time. Here we assess the consequences of adaptation to three different developmental diets in combination with classical selection for early or late reproduction in the fruit fly Drosophila melanogaster. We find that the response to each selection pressure is similar to that observed when they are applied independently, but the overall magnitude of the response depends on the selection regime experienced in the other life stage. For example, adaptation to increased age at reproduction increased lifespan across all diets, however, the extent of the increase was dependent on the dietary selection regime. Similarly, adaptation to a lower calorie developmental diet led to faster development and decreased adult weight, but the magnitude of the response was dependent on the age-at-reproduction selection regime. Given that multiple selection pressures are prevalent in nature, our findings suggest that trade-offs should be considered not only among traits within an organism, but also among adaptive responses to different - sometimes conflicting - selection pressures, including across life stages.

Author(s):  
Jack Horlick ◽  
Rajib Majumder ◽  
Ida Lundbäck ◽  
Phillip W. Taylor ◽  
Fleur Ponton ◽  
...  

Gut bacteria play a key role in insect fitness, but the changes in gut microbiome profile across developmental stages of holometabolous insects remains little explored. Understanding changes in the microbiome across life stages is an important step toward understanding the associated shifts in functional relationships and trade-offs. Here, we characterised the microbiome of larvae, pupae, and adults of the highly polyphagous fruit fly Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) using next-generation sequencing. We sampled individuals from colonies that had been recently introduced to the laboratory environment from naturally infested fruits at generations one (‘G1’) and five (‘G5’). Alpha diversity increased across developmental stages at both G1 and G5, with maximum diversity in adults. Community composition changed across developmental stages and between generations. In G1, larval and pupal microbiomes were dominated by the genus Asaia whereas adult microbiomes were dominated by Enterobacter. In G5, larval and pupal microbiomes contained a high relative abundance of Asaia, but pupae also had a high relative abundance of Staphylococcus and Burkholderia, and there were no dominant patterns in adults. Our findings provide insights into the developmental stage-dependent microbiome associations of a polyphagous fly, and how host-symbiont interactions change at each life stage through the transition from nature to laboratory environments.


The comparative method as recently developed can be used to identify statistically independent instances of life-history evolution. When life-history traits show evidence for correlated evolutionary change with each other or with ecological differences, it is often possible to single out the trade-offs and selective forces responsible for the evolution of life-history diversity. Suites of life-history characters often evolve in concert, and recent optimality models incorporating few variables show promise for interpreting that evolution in terms of few selective forces. Because hosts provide well-defined environments for their parasites, when host-parasite phylogenies are congruent it is possible to test ideas about the evolution of particular life-history and size-related traits.


Author(s):  
Maren N. Vitousek ◽  
Laura A. Schoenle

Hormones mediate the expression of life history traits—phenotypic traits that contribute to lifetime fitness (i.e., reproductive timing, growth rate, number and size of offspring). The endocrine system shapes phenotype by organizing tissues during developmental periods and by activating changes in behavior, physiology, and morphology in response to varying physical and social environments. Because hormones can simultaneously regulate many traits (hormonal pleiotropy), they are important mediators of life history trade-offs among growth, reproduction, and survival. This chapter reviews the role of hormones in shaping life histories with an emphasis on developmental plasticity and reversible flexibility in endocrine and life history traits. It also discusses the advantages of studying hormone–behavior interactions from an evolutionary perspective. Recent research in evolutionary endocrinology has provided insight into the heritability of endocrine traits, how selection on hormone systems may influence the evolution of life histories, and the role of hormonal pleiotropy in driving or constraining evolution.


2007 ◽  
Vol 363 (1490) ◽  
pp. 375-398 ◽  
Author(s):  
John R Speakman

Life-history trade-offs between components of fitness arise because reproduction entails both gains and costs. Costs of reproduction can be divided into ecological and physiological costs. The latter have been rarely studied yet are probably a dominant component of the effect. A deeper understanding of life-history evolution will only come about once these physiological costs are better understood. Physiological costs may be direct or indirect. Direct costs include the energy and nutrient demands of the reproductive event, and the morphological changes that are necessary to facilitate achieving these demands. Indirect costs may be optional ‘compensatory costs’ whereby the animal chooses to reduce investment in some other aspect of its physiology to maximize the input of resource to reproduction. Such costs may be distinguished from consequential costs that are an inescapable consequence of the reproductive event. In small mammals, the direct costs of reproduction involve increased energy, protein and calcium demands during pregnancy, but most particularly during lactation. Organ remodelling is necessary to achieve the high demands of lactation and involves growth of the alimentary tract and associated organs such as the liver and pancreas. Compensatory indirect costs include reductions in thermogenesis, immune function and physical activity. Obligatory consequential costs include hyperthermia, bone loss, disruption of sleep patterns and oxidative stress. This is unlikely to be a complete list. Our knowledge of these physiological costs is currently at best described as rudimentary. For some, we do not even know whether they are compensatory or obligatory. For almost all of them, we have no idea of exact mechanisms or how these costs translate into fitness trade-offs.


2015 ◽  
Vol 8 (7) ◽  
pp. 635-649 ◽  
Author(s):  
Emilie Snell‐Rood ◽  
Rickey Cothran ◽  
Anne Espeset ◽  
Punidan Jeyasingh ◽  
Sarah Hobbie ◽  
...  

2007 ◽  
Vol 362 (1488) ◽  
pp. 2187-2189 ◽  
Author(s):  
Alex D Rogers ◽  
Eugene J Murphy ◽  
Nadine M Johnston ◽  
Andrew Clarke

The Antarctic biota has evolved over the last 100 million years in increasingly isolated and cold conditions. As a result, Antarctic species, from micro-organisms to vertebrates, have adapted to life at extremely low temperatures, including changes in the genome, physiology and ecological traits such as life history. Coupled with cycles of glaciation that have promoted speciation in the Antarctic, this has led to a unique biota in terms of biogeography, patterns of species distribution and endemism. Specialization in the Antarctic biota has led to trade-offs in many ecologically important functions and Antarctic species may have a limited capacity to adapt to present climate change. These include the direct effects of changes in environmental parameters and indirect effects of increased competition and predation resulting from altered life histories of Antarctic species and the impacts of invasive species. Ultimately, climate change may alter the responses of Antarctic ecosystems to harvesting from humans. The unique adaptations of Antarctic species mean that they provide unique models of molecular evolution in natural populations. The simplicity of Antarctic communities, especially from terrestrial systems, makes them ideal to investigate the ecological implications of climate change, which are difficult to identify in more complex systems.


<em>Abstract</em>.—Stream fishes carry out their life histories across broad spatial and temporal scales, leading to spatially structured populations. Therefore, incorporating metapopulation dynamics into models of stream fish populations may improve our ability to understand mechanisms regulating them. First, we reviewed empirical research on metapopulation dynamics in the stream fish ecology literature and found 31 papers that used the metapopulation framework. The majority of papers applied no specific metapopulation model, or included space only implicitly. Although parameterization of spatially realistic models is challenging, we suggest that stream fish ecologists should incorporate space into models and recognize that metapopulation types may change across scales. Second, we considered metacommunity theory, which addresses how trade-offs among dispersal, environmental heterogeneity, and biotic interactions structure communities across spatial scales. There are no explicit tests of metacommunity theory using stream fishes to date, so we used data from our research in a Great Plains stream to test the utility of these paradigms. We found that this plains fish metacommunity was structured mainly by spatial factors related to dispersal opportunity and, to a lesser extent, by environmental heterogeneity. Currently, metacommunity models are more heuristic than predictive. Therefore, we propose that future stream fish metacommunity research should focus on developing testable hypotheses that incorporate stream fish life history attributes, and seasonal environmental variability, across spatial scales. This emerging body of research is likely to be valuable not only for basic stream fish ecological research, but also multispecies conservation and management.


2006 ◽  
Vol 29 (3) ◽  
pp. 288-289
Author(s):  
Peter Kappeler

The proposition that selective advantages of linguistic skills have contributed to shifts in ontogenetic landmarks of human life histories in early Homo sapiens is weakened by neglecting alternative mechanisms of life history evolution. Moreover, arguments about biological continuity through sweeping comparisons with nonhuman primates do not support various assumptions of this scenario.


2015 ◽  
Vol 282 (1821) ◽  
pp. 20151808 ◽  
Author(s):  
Paola Laiolo ◽  
Javier Seoane ◽  
Juan Carlos Illera ◽  
Giulia Bastianelli ◽  
Luis María Carrascal ◽  
...  

The fit between life histories and ecological niche is a paradigm of phenotypic evolution, also widely used to explain patterns of species co-occurrence. By analysing the lifestyles of a sympatric avian assemblage, we show that species' solutions to environmental problems are not unbound. We identify a life-history continuum structured on the cost of reproduction along a temperature gradient, as well as habitat-driven parental behaviour. However, environmental fit and trait convergence are limited by niche filling and by within-species variability of niche traits, which is greater than variability of life histories. Phylogeny, allometry and trade-offs are other important constraints: lifetime reproductive investment is tightly bound to body size, and the optimal allocation to reproduction for a given size is not established by niche characteristics but by trade-offs with survival. Life histories thus keep pace with habitat and climate, but under the limitations imposed by metabolism, trade-offs among traits and species' realized niche.


2013 ◽  
Vol 145 (5) ◽  
pp. 471-495 ◽  
Author(s):  
B.S. Lindgren ◽  
K.F. Raffa

AbstractBark beetles (Coleoptera: Curculionidae: Scolytinae) play important roles in temperate conifer ecosystems, and also cause substantial economic losses. Although their general life histories are relatively similar, different species vary markedly in the physiological condition of the hosts they select. Most of ∼6000 known species colonise dead or stressed trees, a resource they share with a large diversity of insects and other organisms. A small number of bark beetle species kill healthy, live trees. These few are of particular interest as they compete directly with humans for resources. We propose that tree killing evolved when intense interspecific competition in the ephemeral, scarce resource of defence-impaired trees selected for genotypes that allowed them to escape this limitation by attacking relatively healthy trees. These transitions were uncommon, and we suggest they were facilitated by (a) genetically and phenotypically flexible host selection behaviours, (b) biochemical adaptations for detoxifying a wide range of defence compounds, and (c) associations with symbionts, which together aided bark beetles in overcoming formidable constitutive and induced host defences. The ability to detoxify terpenes influenced the evolutionary course of pheromonal communication. Specifically, a mate attraction system, which was exploited by intraspecific competitors in locating poorly defended hosts, became a system of cooperative attack in which emitters benefit from the contributions responders make in overcoming defence. This functional shift in communication was driven in part by linkage of beetle semiochemistry to host defence chemistry. Behavioural and phenological adaptations also improved the beetles’ abilities to detect when tree defences are impaired, and, where compatible with life history adaptations to other selective forces, for flight to coincide with seasonally predictable host stress agents. We propose a conceptual model, whereby the above mechanisms enable beetles to concentrate on those trees that offer an optimal trade-off between host defence and interspecific competition, along dynamic gradients of tree vigour and stand-level beetle density. We offer suggestions for future research on testing elements of this model.


Sign in / Sign up

Export Citation Format

Share Document