scholarly journals Long-range single-molecule mapping of chromatin accessibility in eukaryotes

2018 ◽  
Author(s):  
Zohar Shipony ◽  
Georgi K. Marinov ◽  
Matthew P. Swaffer ◽  
Nasa A. Sinott-Armstrong ◽  
Jan M. Skotheim ◽  
...  

AbstractActive regulatory elements in eukaryotes are typically characterized by an open, nucleosome-depleted chromatin structure; mapping areas of open chromatin has accordingly emerged as a widely used tool in the arsenal of modern functional genomics. However, existing approaches for profiling chromatin accessibility are limited by their reliance on DNA fragmentation and short read sequencing, which leaves them unable to provide information about the state of chromatin on larger scales or reveal coordination between the chromatin state of individual distal regulatory elements. To address these limitations, we have developed a method for profiling accessibility of individual chromatin fibers at multi-kilobase length scale (SMAC-seq, or Single-Molecule long-read Accessible Chromatin mapping sequencing assay), enabling the simultaneous, high-resolution, single-molecule assessment of the chromatin state of distal genomic elements. Our strategy is based on combining the preferential methylation of open chromatin regions by DNA methyltransferases (CpG and GpC 5-methylcytosine (5mC) and N6-methyladenosine (m6A) enzymes) and the ability of long-read single-molecule nanopore sequencing to directly read out the methylation state of individual DNA bases. Applying SMAC-seq to the budding yeast Saccharomyces cerevisiae, we demonstrate that aggregate SMAC-seq signals match bulk-level accessibility measurements, observe single-molecule protection footprints of nucleosomes and transcription factors, and quantify the correlation between the chromatin states of distal genomic elements.

2020 ◽  
Author(s):  
Kaili Fan ◽  
Jill E. Moore ◽  
Xiao-ou Zhang ◽  
Zhiping Weng

AbstractGene expression is controlled by regulatory elements with accessible chromatin. Although the majority of regulatory elements are cell type-specific, being in the open chromatin state in only one or a few cell types, approximately 16,000 regions in the human genome and 13,000 regions in the mouse genome are in the open chromatin state in nearly all of the 517 human and 94 mouse cell and tissue types assayed by the ENCODE consortium, respectively. We performed a systematic analysis on the subset of 9,000 human and 8,000 mouse ubiquitously (ubi) open chromatin regions that were also classified as candidate cis-regulatory elements (cCREs) with promoter-like signatures (PLSs) by the ENCODE consortium, which we refer to as ubi-PLSs. We found that these ubi-PLSs had higher levels of CG dinucleotides and corresponded to the genes with ubiquitously high levels of transcriptional activities. Furthermore, the transcription start sites of a vast majority of cell-essential genes are located in ubi-PLSs. ubi-PLSs are enriched in the motifs of ubiquitously expressed transcription factors and preferentially bound by transcriptional cofactors that regulate ubiquitously expressed genes. Finally, ubi-PLSs are highly conserved between human and mouse at the synteny level, but not as conserved at the sequence level, with a high turnover of transcription factor motif sites. Thus, there is a distinct set of roughly 9,000 promoters in the mammalian genome that are actively maintained in the open chromatin state in nearly all cell types to ensure the transcriptional program of cell-essential genes.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii76-ii76
Author(s):  
Radhika Mathur ◽  
Sriranga Iyyanki ◽  
Stephanie Hilz ◽  
Chibo Hong ◽  
Joanna Phillips ◽  
...  

Abstract Treatment failure in glioblastoma is often attributed to intratumoral heterogeneity (ITH), which fosters tumor evolution and generation of therapy-resistant clones. While ITH in glioblastoma has been well-characterized at the genomic and transcriptomic levels, the extent of ITH at the epigenomic level and its biological and clinical significance are not well understood. In collaboration with neurosurgeons, neuropathologists, and biomedical imaging experts, we have established a novel topographical approach towards characterizing epigenomic ITH in three-dimensional (3-D) space. We utilize pre-operative MRI scans to define tumor volume and then utilize 3-D surgical neuro-navigation to intra-operatively acquire 10+ samples representing maximal anatomical diversity. The precise spatial location of each sample is mapped by 3-D coordinates, enabling tumors to be visualized in 360-degrees and providing unprecedented insight into their spatial organization and patterning. For each sample, we conduct assay for transposase-accessible chromatin using sequencing (ATAC-Seq), which provides information on the genomic locations of open chromatin, DNA-binding proteins, and individual nucleosomes at nucleotide resolution. We additionally conduct whole-exome sequencing and RNA sequencing for each spatially mapped sample. Integrative analysis of these datasets reveals distinct patterns of chromatin accessibility within glioblastoma tumors, as well as their associations with genetically defined clonal expansions. Our analysis further reveals how differences in chromatin accessibility within tumors reflect underlying transcription factor activity at gene regulatory elements, including both promoters and enhancers, and drive expression of particular gene expression sets, including neuronal and immune programs. Collectively, this work provides the most comprehensive characterization of epigenomic ITH to date, establishing its importance for driving tumor evolution and therapy resistance in glioblastoma. As a resource for further investigation, we have provided our datasets on an interactive data sharing platform – The 3D Glioma Atlas – that enables 360-degree visualization of both genomic and epigenomic ITH.


Science ◽  
2020 ◽  
Vol 367 (6477) ◽  
pp. 580-586 ◽  
Author(s):  
Jun Liu ◽  
Xiaoyang Dou ◽  
Chuanyuan Chen ◽  
Chuan Chen ◽  
Chang Liu ◽  
...  

N6-methyladenosine (m6A) regulates stability and translation of messenger RNA (mRNA) in various biological processes. In this work, we show that knockout of the m6A writer Mettl3 or the nuclear reader Ythdc1 in mouse embryonic stem cells increases chromatin accessibility and activates transcription in an m6A-dependent manner. We found that METTL3 deposits m6A modifications on chromosome-associated regulatory RNAs (carRNAs), including promoter-associated RNAs, enhancer RNAs, and repeat RNAs. YTHDC1 facilitates the decay of a subset of these m6A-modified RNAs, especially elements of the long interspersed element-1 family, through the nuclear exosome targeting–mediated nuclear degradation. Reducing m6A methylation by METTL3 depletion or site-specific m6A demethylation of selected carRNAs elevates the levels of carRNAs and promotes open chromatin state and downstream transcription. Collectively, our results reveal that m6A on carRNAs can globally tune chromatin state and transcription.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Matthias Thurner ◽  
Martijn van de Bunt ◽  
Jason M Torres ◽  
Anubha Mahajan ◽  
Vibe Nylander ◽  
...  

Human genetic studies have emphasised the dominant contribution of pancreatic islet dysfunction to development of Type 2 Diabetes (T2D). However, limited annotation of the islet epigenome has constrained efforts to define the molecular mechanisms mediating the, largely regulatory, signals revealed by Genome-Wide Association Studies (GWAS). We characterised patterns of chromatin accessibility (ATAC-seq, n = 17) and DNA methylation (whole-genome bisulphite sequencing, n = 10) in human islets, generating high-resolution chromatin state maps through integration with established ChIP-seq marks. We found enrichment of GWAS signals for T2D and fasting glucose was concentrated in subsets of islet enhancers characterised by open chromatin and hypomethylation, with the former annotation predominant. At several loci (including CDC123, ADCY5, KLHDC5) the combination of fine-mapping genetic data and chromatin state enrichment maps, supplemented by allelic imbalance in chromatin accessibility pinpointed likely causal variants. The combination of increasingly-precise genetic and islet epigenomic information accelerates definition of causal mechanisms implicated in T2D pathogenesis.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Pâmela A. Alexandre ◽  
Marina Naval-Sánchez ◽  
Moira Menzies ◽  
Loan T. Nguyen ◽  
Laercio R. Porto-Neto ◽  
...  

Abstract Background Spatiotemporal changes in the chromatin accessibility landscape are essential to cell differentiation, development, health, and disease. The quest of identifying regulatory elements in open chromatin regions across different tissues and developmental stages is led by large international collaborative efforts mostly focusing on model organisms, such as ENCODE. Recently, the Functional Annotation of Animal Genomes (FAANG) has been established to unravel the regulatory elements in non-model organisms, including cattle. Now, we can transition from prediction to validation by experimentally identifying the regulatory elements in tropical indicine cattle. The identification of regulatory elements, their annotation and comparison with the taurine counterpart, holds high promise to link regulatory regions to adaptability traits and improve animal productivity and welfare. Results We generate open chromatin profiles for liver, muscle, and hypothalamus of indicine cattle through ATAC-seq. Using robust methods for motif discovery, motif enrichment and transcription factor binding sites, we identify potential master regulators of the epigenomic profile in these three tissues, namely HNF4, MEF2, and SOX factors, respectively. Integration with transcriptomic data allows us to confirm some of their target genes. Finally, by comparing our results with Bos taurus data we identify potential indicine-specific open chromatin regions and overlaps with indicine selective sweeps. Conclusions Our findings provide insights into the identification and analysis of regulatory elements in non-model organisms, the evolution of regulatory elements within two cattle subspecies as well as having an immediate impact on the animal genetics community in particular for a relevant productive species such as tropical cattle.


2017 ◽  
Author(s):  
Matthias Thurner ◽  
Martijn van de Bunt ◽  
Jason M Torres ◽  
Anubha Mahajan ◽  
Vibe Nylander ◽  
...  

AbstractHuman genetic studies have emphasised the dominant contribution of pancreatic islet dysfunction to development of Type 2 Diabetes (T2D). However, limited annotation of the islet epigenome has constrained efforts to define the molecular mechanisms mediating the, largely regulatory, signals revealed by Genome-Wide Association Studies (GWAS). We characterised patterns of chromatin accessibility (ATAC-seq, n=17) and DNA methylation (whole-genome bisulphite sequencing, n=10) in human islets, generating high-resolution chromatin state maps through integration with established ChIP-seq marks. We found enrichment of GWAS signals for T2D and fasting glucose was concentrated in subsets of islet enhancers characterised by open chromatin and hypomethylation, with the former annotation predominant. At several loci (including CDC123, ADCY5, KLHDC5) the combination of fine-mapping genetic data and chromatin state enrichment maps, supplemented by allelic imbalance in chromatin accessibility pinpointed likely causal variants. The combination of increasingly-precise genetic and islet epigenomic information accelerates definition of causal mechanisms implicated in T2D pathogenesis.


2020 ◽  
Author(s):  
Parker Knight ◽  
Marie-Pierre L. Gauthier ◽  
Carolina E. Pardo ◽  
Russell P. Darst ◽  
Alberto Riva ◽  
...  

AbstractDifferential DNA methylation and chromatin accessibility are associated with disease development, particularly cancer. Methods that allow profiling of these epigenetic mechanisms in the same reaction and at the single-molecule or single-cell level continue to emerge. However, a challenge lies in jointly visualizing and analyzing the heterogeneous nature of the data and extracting regulatory insight. Here, we developed methylscaper, a visualization framework for simultaneous analysis of DNA methylation and chromatin landscapes. Methylscaper implements a weighted principle component analysis that orders sequencing reads, each providing a record of the chromatin state of one epiallele, and reveals patterns of nucleosome positioning, transcription factor occupancy, and DNA methylation. We demonstrate methylscaper’s utility on a long-read, single-molecule methyltransferase accessibility protocol for individual templates (MAPit) dataset and a single-cell nucleosome, methylation, and transcription sequencing (scNMT-seq) dataset. In comparison to other procedures, methylscaper is able to readily identify chromatin features that are biologically relevant to transcriptional status while scaling to larger datasets.Availability and implementationMethylscaper, is available on GitHub at https://github.com/rhondabacher/[email protected]


2018 ◽  
Author(s):  
Michal Pawlak ◽  
Katarzyna Z. Kedzierska ◽  
Maciej Migdal ◽  
Karim Abu Nahia ◽  
Jordan A. Ramilowski ◽  
...  

ABSTRACTThe development of an organ involves dynamic regulation of gene transcription and complex multipathway interactions. To better understand transcriptional regulatory mechanism driving heart development and the consequences of its disruption, we isolated cardiomyocytes (CMs) from wild-type zebrafish embryos at 24, 48 and 72 hours post fertilization corresponding to heart looping, chamber formation and heart maturation, and from mutant lines carrying loss-of-function mutations in gata5, tbx5a and hand2, transcription factors (TFs) required for proper heart development. The integration of CM transcriptomics (RNA-seq) and genome-wide chromatin accessibility maps (ATAC-seq) unravelled dynamic regulatory networks driving crucial events of heart development. These networks contained key cardiac TFs including Gata5/6, Nkx2.5, Tbx5/20, and Hand2, and are associated with open chromatin regions enriched for DNA sequence motifs belonging to the family of the corresponding TFs. These networks were disrupted in cardiac TF mutants, indicating their importance in proper heart development. The most prominent gene expression changes, which correlated with chromatin accessibility modifications within their proximal promoter regions, occurred between heart looping and chamber formation, and were associated with metabolic and hematopoietic/cardiac switch during CM maturation. Furthermore, loss of function of cardiac TFs Gata5, Tbx5a, and Hand2 affected the cardiac regulatory networks and caused global changes in chromatin accessibility profile. Among regions with differential chromatin accessibility in mutants were highly conserved non-coding elements which represent putative cis regulatory elements with potential role in heart development and disease. Altogether, our results revealed the dynamic regulatory landscape at key stages of heart development and identified molecular drivers of heart morphogenesis.


2014 ◽  
Author(s):  
Sofie Demeyer ◽  
Tom Michoel

Transcriptional regulation of gene expression is one of the main processes that affect cell diversification from a single set of genes. Regulatory proteins often interact with DNA regions located distally from the transcription start sites (TSS) of the genes. We developed a computational method that combines open chromatin and gene expression information for a large number of cell types to identify these distal regulatory elements. Our method builds correlation graphs for publicly available DNase-seq and exon array datasets with matching samples and uses graph-based methods to filter findings supported by multiple datasets and remove indirect interactions. The resulting set of interactions was validated with both anecdotal information of known long-range interactions and unbiased experimental data deduced from Hi-C and CAGE experiments. Our results provide a novel set of high-confidence candidate open chromatin regions involved in gene regulation, often located several Mb away from the TSS of their target gene.


Sign in / Sign up

Export Citation Format

Share Document