scholarly journals Cerebral Metabolic Changes during Visuomotor Adaptation Assessed using Quantitative FMRI

2019 ◽  
Author(s):  
Catherine Foster ◽  
Jessica J Steventon ◽  
Daniel Helme ◽  
Valentina Tomassini ◽  
Richard G. Wise

AbstractThe neural energetics underlying functional brain plasticity have not been thoroughly investigated in the healthy human brain. A better understanding of the blood flow and metabolism changes underlying plasticity will help us to address pathologies in which plasticity is compromised and, with interventions, could be enhanced for patient benefit.Calibrated fMRI was conducted in 20 healthy participants during performance of a serial reaction time task which induces rapid motor adaptation. Regions of interest (ROIs) were defined from areas showing linearly decreasing task-induced BOLD and CBF responses. BOLD, CBF and relative CMRO2 responses were calculated for each block of the task. The flow-metabolism coupling ratio, n, was also calculated for each ROI. Increases from baseline in BOLD, CBF and CMRO2 were observed in multiple brain regions including the motor and sensorimotor cortices, cerebellum and hippocampus during SRT task performance, as well as changes in the response amplitude from early to late task blocks reflecting task adaptation. CMRO2 responses on average decreased faster than BOLD or CBF responses, potentially due to rapid neural adaptation. However, the mean flow-metabolism coupling ratio was not significantly different between ROIs or across blocks.Calibrated fMRI can be used to study energetic changes during learning in the healthy brain and could be used to investigate the vascular and metabolic changes underlying reductions in plasticity in ageing and disease.


2019 ◽  
Author(s):  
Dipanjan Ray ◽  
Nilambari Hajare ◽  
Dipanjan Roy ◽  
Arpan Banerjee

AbstractVisual dual stream theory posits that two distinct neural pathways of specific functional significance originate from primary visual areas and reach the inferior temporal (ventral) and posterior parietal areas (dorsal). However, there are several unresolved questions concerning the fundamental aspects of this theory. For example, is the functional dissociation between ventral and dorsal stream driven by features in input stimuli or is it driven by categorical differences between visuo-perceptual and visuo-motor functions? Is the dual stream rigid or flexible? What is the nature of the interactions between two streams? We addressed these questions using fMRI recordings on healthy human volunteers and employing stimuli and tasks that can tease out the divergence between visuo-perceptual and visuo-motor models of dual stream theory. fMRI scans were repeated after seven practice sessions that were conducted in a non-MRI environment to investigate the effects of neuroplasticity. Brain activation analysis supports an input-based functional dissociation and existence of context-dependent neuroplasticity in dual stream areas. Intriguingly, premotor cortex activation was observed in the position perception task and distributed deactivated regions were observed in all perception tasks thus, warranting a network level analysis. Dynamic causal modelling (DCM) analysis incorporating activated and deactivated brain areas during perception tasks indicates that the brain dynamics during visual perception and actions could be interpreted within the framework of predictive coding. Effectively, the network level findings point towards the existence of more intricate context-driven functional networks selective of “what” and “where” information rather than segregated streams of processing along ventral and dorsal brain regions.



2020 ◽  
Vol 11 ◽  
Author(s):  
Catherine Foster ◽  
Jessica J. Steventon ◽  
Daniel Helme ◽  
Valentina Tomassini ◽  
Richard G. Wise


2019 ◽  
Vol 3 ◽  
pp. 247054701987788
Author(s):  
Megan M. Hoch ◽  
Gaelle E. Doucet ◽  
Dominik A. Moser ◽  
Won Hee Lee ◽  
Katherine A. Collins ◽  
...  

Background Digital therapeutics such as cognitive–emotional training have begun to show promise for the treatment of major depressive disorder. Available clinical trial data suggest that monotherapy with cognitive–emotional training using the Emotional Faces Memory Task is beneficial in reducing depressive symptoms in patients with major depressive disorder. The aim of this study was to investigate whether Emotional Faces Memory Task training for major depressive disorder is associated with changes in brain connectivity and whether changes in connectivity parameters are related to symptomatic improvement. Methods Fourteen major depressive disorder patients received Emotional Faces Memory Task training as monotherapy over a six-week period. Patients were scanned at baseline and posttreatment to identify changes in resting-state functional connectivity and effective connectivity during emotional working memory processing. Results Compared to baseline, patients showed posttreatment reduced connectivity within resting-state networks involved in self-referential and salience processing and greater integration across the functional connectome at rest. Moreover, we observed a posttreatment increase in the Emotional Faces Memory Task-induced modulation of connectivity between cortical control and limbic brain regions, which was associated with clinical improvement. Discussion These findings provide initial evidence that cognitive–emotional training may be associated with changes in short-term plasticity of brain networks implicated in major depressive disorder. Conclusion Our findings pave the way for the principled design of large clinical and neuroimaging studies.



2004 ◽  
Vol 16 (8) ◽  
pp. 1339-1351 ◽  
Author(s):  
Kathleen M. Thomas ◽  
Ruskin H. Hunt ◽  
Nathalie Vizueta ◽  
Tobias Sommer ◽  
Sarah Durston ◽  
...  

Prevailing theories of implicit or unaware learning propose a developmental invariance model, with implicit function maturing early in infancy or childhood despite prolonged improvements in explicit or intentional learning and memory systems across childhood. Neuroimaging studies of adult visuomotor sequence learning have associated fronto-striatal brain regions with implicit learning of spatial sequences. Given evidence of continued development in these brain regions during childhood, we compare implicit sequence learning in adults and 7- to 11-year-old children to examine potential developmental differences in the recruitment of fronto-striatal circuitry during implicit learning. Participants performed a standard serial reaction time task. Stimuli alternately followed a fixed 10-step sequence of locations or were presented in a pseudorandom order of locations. Adults outperformed children, achieving a significantly larger sequence learning effect and showing learning more quickly than children. Age-related differences in activity were observed in the premotor cortex, putamen, hippocampus, inferotemporal cortex, and parietal cortex. We observed differential recruitment of cortical and subcortical motor systems between groups, presumably reflecting age differences in motor response execution. Adults showed greater hippocampal activity for sequence trials, whereas children demonstrated greater signal during random trials. Activity in the right caudate correlated significantly with behavioral measures of implicit learning for both age groups, although adults showed greater signal change than children overall, as would be expected given developmental differences in sequence learning magnitude. These results challenge the idea of developmental invariance in implicit learning and instead support a view of parallel developments in implicit and explicit learning systems.



2019 ◽  
Author(s):  
František Váša ◽  
Rafael Romero-Garcia ◽  
Manfred G. Kitzbichler ◽  
Jakob Seidlitz ◽  
Kirstie J. Whitaker ◽  
...  

AbstractAdolescent changes in human brain function are not entirely understood. Here we used multi-echo functional magnetic resonance imaging (fMRI) to measure developmental change in functional connectivity (FC) of resting-state oscillations between pairs of 330 cortical regions and 16 subcortical regions in N=298 healthy adolescents. Participants were aged 14-26 years and were scanned on two or more occasions at least 6 months apart. We found two distinct modes of age-related change in FC: “conservative” and “disruptive”. Conservative development was characteristic of primary cortex, which was strongly connected at 14 years and became even more connected in the period 14-26 years. Disruptive development was characteristic of association cortex, hippocampus and amygdala, which were not strongly connected at 14 years but became more strongly connected during adolescence. We defined the maturational index (MI) as the signed coefficient of the linear relationship between baseline FC (at 14 years,FC14) and adolescent change in FC (∆FC14−26). Disruptive systems (with negative MI) were functionally specialised for social cognition and autobiographical memory and were significantly co-located with prior maps of aerobic glycolysis (AG), AG-related gene expression, post-natal expansion of cortical surface area, and adolescent shrinkage of cortical depth. We conclude that human brain organization is disrupted during adolescence by the emergence of strong functional connectivity of subcortical nuclei and association cortical areas, representing metabolically expensive re-modelling of synaptic connectivity between brain regions that were not strongly connected in childhood. We suggest that this re-modelling process may support emergence of social skills and self-awareness during healthy human adolescence.



2020 ◽  
Author(s):  
bingbo bao ◽  
xuyun hua ◽  
haifeng wei ◽  
pengbo luo ◽  
hongyi zhu ◽  
...  

Abstract Background: Amputation in adults is a serious condition and most patients were associated with the remapping of representations in motor and sensory brain network. Methods: The present study includes 8 healthy volunteers and 16 patients with amputation. We use resting-state fMRI to investigate the local and extent brain plasticity in patients suffering from amputation simultaneously. Both the amplitude of low-frequency fluctuations (ALFF) and degree centrality (DC) were used for the assessment of neuroplasticity in central level. Results: We described changes in spatial patterns of intrinsic brain activity and functional connectivity in amputees in the present study and we found that not only the sensory and motor cortex, but also the related brain regions involved in the functional plasticity after upper extremity deafferentation. Conclusion: Our findings showed local and extensive cortical changes in the sensorimotor and cognitive-related brain regions, which may imply the dysfunction in not only sensory and motor function, but also sensorimotor integration and motor plan. The activation and intrinsic connectivity in the brain changed a lot showed correlation with the deafferentation status.



2019 ◽  
Author(s):  
Eduardo Estrada ◽  
ROBERTO COLOM

[Paper in press. Accepted for publication in Developmental Psychology. Copyright by APA] Throughout childhood and adolescence, humans experience marked changes in cortical structure and cognitive ability. Cortical thickness and surface area, in particular, have been associated with cognitive ability. Here we ask the question: What are the time-related associations between cognitive changes and cortical structure maturation. Identifying a developmental sequence requires multiple measurements of these variables from the same individuals across time. This allows capturing relations among the variables and, thus, finding whether: (a) developmental cognitive changes follow cortical structure maturation, (b) cortical structure maturation follows cognitive changes, or (c) both processes influence each other over time. 430 children and adolescents (age range = 6.01 – 22.28 years) completed the WASI battery and were MRI scanned at three time points separated by ≈ 2 years (mean age t1 = 10.60, SD = 3.58, mean age t2=12.63, SD=3.62, mean age t3=14.49, SD=3.55). Latent Change Score (LCS) models were applied to quantify age-related relationships among the variables of interest. Our results indicate that cortical and cognitive changes related to each other reciprocally. Specifically, the magnitude or rate of the change in each variable at any occasion –and not the previous level– was predictive of later changes. These results were replicated for brain regions selected according to the coordinates identified in the Basten et al.’s (2015) meta-analysis, to the Parieto-Frontal Integration Theory (P-FIT, Jung & Haier, 2007) and to the whole cortex. Potential implications regarding brain plasticity and cognitive enhancement are discussed.



2021 ◽  
Author(s):  
Jennifer S Goldman ◽  
Lionel Kusch ◽  
Bahar Hazal Yalcinkaya ◽  
Damien Depannemaecker ◽  
Trang-Anh Estelle Nghiem ◽  
...  

Hallmarks of neural dynamics during healthy human brain states span spatial scales from neuromodulators acting on microscopic ion channels to macroscopic changes in communication between brain regions. Developing a scale-integrated understanding of neural dynamics has therefore remained challenging. Here, we perform the integration across scales using mean-field modeling of Adaptive Exponential (AdEx) neurons, explicitly incorporating intrinsic properties of excitatory and inhibitory neurons. We report that when AdEx mean-field neural populations are connected via structural tracts defined by the human connectome, macroscopic dynamics resembling human brain activity emerge. Importantly, the model can qualitatively and quantitatively account for properties of empirical spontaneous and stimulus-evoked dynamics in the space, time, phase, and frequency domains. Remarkably, the model also reproduces brain-wide enhanced responsiveness and capacity to encode information particularly during wake-like states, as quantified using the perturbational complexity index. The model was run using The Virtual Brain (TVB) simulator, and is open-access in EBRAINS. This approach not only provides a scale-integrated understanding of brain states and their underlying mechanisms, but also open access tools to investigate brain responsiveness, toward producing a more unified, formal understanding of experimental data from conscious and unconscious states, as well as their associated pathologies.



2019 ◽  
Author(s):  
Congyao Zha ◽  
Carole A Farah ◽  
Vladimir Fonov ◽  
David A. Rudko ◽  
Wayne S Sossin

AbstractPurposeThe non-classical Small Optic Lobe (SOL) family of calpains are intracellular cysteine proteases that are expressed in the nervous system and appear to play an important role in neuronal development in both Drosophila, where loss of this calpain leads to the eponymous small optic lobes, and in mouse and human, where loss of this calpain (Capn15) leads to eye anomalies. However, the brain regions where this calpain is expressed and the areas most affected by the loss of this calpain have not been carefully examined.ProceduresWe utilize an insert strain where lacZ is expressed under the control of the Capn15 promoter, together with immunocytochemistry with markers of specific cell types to address where Capn 15 is expressed in the brain. We use small animal MRI comparing WT, Capn15 knockout and Capn15 conditional knockout mice to address the brain regions that are affected when Capn 15 is not present, either in early development of the adult.ResultsCapn15 is expressed in diverse brain regions, many of them involved in plasticity such as the hippocampus, lateral amygdala and Purkinje neurons. Capn15 knockout mice have smaller brains, and present specific deficits in the thalamus and hippocampal regions. There are no deficits revealed by MRI in brain regions when Capn15 is knocked out after development.ConclusionsAreas where Capn15 is expressed in the adult are not good markers for the specific regions where the loss of Capn15 specifically affects brain development. Thus, it is likely that this calpain plays distinct roles in brain development and brain plasticity.



Sign in / Sign up

Export Citation Format

Share Document