scholarly journals Mammalian olfaction is a high temporal bandwidth sense

2019 ◽  
Author(s):  
Andrew Erskine ◽  
Tobias Ackels ◽  
Debanjan Dasgupta ◽  
Izumi Fukunaga ◽  
Andreas T. Schaefer

AbstractOdours are transported in turbulent plumes resulting locally in highly fluctuating odour concentration (Celani et al., 2014; Murlis et al., 1992; Mylne and Mason, 1991; Shraiman and Siggia, 2000). Yet, whether mammals can make use of the ensuing temporal structure (Celani et al., 2014; Crimaldi and Koseff, 2001; Murlis et al., 1992; Mylne and Mason, 1991; Schmuker et al., 2016; Vickers, 2000) to extract information about the olfactory environment remains unknown. Here, we use dual-energy photoionisation recording with >300 Hz bandwidth to simultaneously determine odour concentrations of two odours in air. We show that temporal correlation of odour concentrations reliably predicts whether odorants emerge from the same or different sources in normal turbulent environments outside and in laboratory conditions. To replicate natural odour dynamics in a reproducible manner we developed a multichannel odour delivery device allowing presentation of several odours with 10 ms temporal resolution. Integrating this device in an automated operant conditioning system we demonstrate that mice can reliably discriminate the correlation structure of odours at frequencies of up to 40 Hz. Consistent with this finding, output neurons in the olfactory bulb show segregated responses depending on the correlation of odour stimuli with populations of 10s of neurons sufficient to reach behavioural performance. Our work thus demonstrates that mammals can perceive temporal structure in odour stimuli at surprisingly fast timescales. This in turn might be useful for key behavioural challenges (Jacobs, 2012) such as odour source separation (Hopfield, 1991), figure-ground separation (Rokni et al., 2014) or odour localisation (Vergassola et al., 2007; Vickers, 2000).

Author(s):  
Thomas C. van Leth ◽  
Hidde Leijnse ◽  
Aart Overeem ◽  
Remko Uijlenhoet

AbstractWe investigate the spatio-temporal structure of rainfall at spatial scales from 7m to over 200 km in the Netherlands. We used data from two networks of laser disdrometers with complementary interstation distances in two Dutch cities (comprising five and six disdrometers, respectively) and a Dutch nationwide network of 31 automatic rain gauges. The smallest aggregation interval for which raindrop size distributions were collected by the disdrometers was 30 s, while the automatic rain gauges provided 10-min rainfall sums. This study aims to supplement other micro-γ investigations (usually performed in the context of spatial rainfall variability within a weather radar pixel) with new data, while characterizing the correlation structure across an extended range of scales. To quantify the spatio-temporal variability, we employ a two-parameter exponential model fitted to the spatial correlograms and characterize the parameters of the model as a function of the temporal aggregation interval. This widely used method allows for a meaningful comparison with seven other studies across contrasting climatic settings all around the world. We also separately analyzed the intermittency of the rainfall observations. We show that a single parameterization, consisting of a two-parameter exponential spatial model as a function of interstation distance combined with a power-law model for decorrelation distance as a function of aggregation interval, can coherently describe rainfall variability (both spatial correlation and intermittency) across a wide range of scales. Limiting the range of scales to those typically found in micro-γ variability studies (including four of the seven studies to which we compare our results) skews the parameterization and reduces its applicability to larger scales.


Author(s):  
Włodzimierz Lewoniewski ◽  
Krzysztof Węcel ◽  
Witold Abramowicz

One of the most important factors impacting quality of content in Wikipedia is presence of credible sources. By following references readers can verify facts or find more details about described topic. A Wikipedia article can be edited independently in any of over 300 languages, even by anonymous users, therefore information about the same topic may be inconsistent. This also applies to use of references in different language versions of a particular article, so the same statement can have different sources. In this paper we analyzed over 40 million articles from the 55 most developed language versions of Wikipedia to extract information about nearly 200 million references and find the most popular and reliable sources. We presented 10 models for the assessment of the popularity and reliability of the sources based on analysis of meta information about the references in Wikipedia articles, page views and authors of the articles. Using DBpedia and Wikidata we automatically identified the alignment of the sources to a specific domain. Additionally, we analyzed the changes of popularity and reliability in time and identified growth leaders in each considered months. The results can be used for quality improvements of the content in different languages versions of Wikipedia.


2015 ◽  
Vol 113 (9) ◽  
pp. 3112-3129 ◽  
Author(s):  
Ryan M. Carey ◽  
William Erik Sherwood ◽  
Michael T. Shipley ◽  
Alla Borisyuk ◽  
Matt Wachowiak

Olfaction in mammals is a dynamic process driven by the inhalation of air through the nasal cavity. Inhalation determines the temporal structure of sensory neuron responses and shapes the neural dynamics underlying central olfactory processing. Inhalation-linked bursts of activity among olfactory bulb (OB) output neurons [mitral/tufted cells (MCs)] are temporally transformed relative to those of sensory neurons. We investigated how OB circuits shape inhalation-driven dynamics in MCs using a modeling approach that was highly constrained by experimental results. First, we constructed models of canonical OB circuits that included mono- and disynaptic feedforward excitation, recurrent inhibition and feedforward inhibition of the MC. We then used experimental data to drive inputs to the models and to tune parameters; inputs were derived from sensory neuron responses during natural odorant sampling (sniffing) in awake rats, and model output was compared with recordings of MC responses to odorants sampled with the same sniff waveforms. This approach allowed us to identify OB circuit features underlying the temporal transformation of sensory inputs into inhalation-linked patterns of MC spike output. We found that realistic input-output transformations can be achieved independently by multiple circuits, including feedforward inhibition with slow onset and decay kinetics and parallel feedforward MC excitation mediated by external tufted cells. We also found that recurrent and feedforward inhibition had differential impacts on MC firing rates and on inhalation-linked response dynamics. These results highlight the importance of investigating neural circuits in a naturalistic context and provide a framework for further explorations of signal processing by OB networks.


2021 ◽  
Author(s):  
Mariarita Caracciolo ◽  
Fabienne Rigaut-Jalabert ◽  
Sarah Romac ◽  
Frédéric Mahé ◽  
Samuel Forsans ◽  
...  

AbstractMajor seasonal community reorganizations and associated biomass variations are landmarks of plankton ecology. However, the processes determining marine species and community turnover rates have not been fully elucidated so far. Here, we analyse patterns of planktonic protist community succession in temperate latitudes, based on quantitative taxonomic data from both microscopy counts and ribosomal DNA metabarcoding from plankton samples collected biweekly over 8 years (2009-2016) at the SOMLIT-Astan station (Roscoff, Western English Channel). Considering the temporal structure of community dynamics (creating temporal correlation), we elucidated the recurrent seasonal pattern of the dominant species and OTUs (rDNA-derived taxa) that drive annual plankton successions. The use of morphological and molecular analyses in combination allowed us to assess absolute species abundance while improving taxonomic resolution, and revealed a greater diversity. Overall, our results underpinned a protist community characterised by a seasonal structure, which is supported by the dominant OTUs. We detected that some were partly benthic as a result of the intense tidal mixing typical of the French coasts in the English Channel. While the occurrence of these microorganisms is driven by the physical and biogeochemical conditions of the environment, internal community processes, such as the complex network of biotic interactions, also play a key role in shaping protist communities.


2021 ◽  
Vol 19 (1) ◽  
pp. 42-60
Author(s):  
Dina Nikulicheva ◽  
◽  

The article explores a fragment of the grammatical system of the Danish language, which represents a regular formal variation of auxiliary language markers — causal conjunctions fordi, for, eftersom, thi. The functional and pragmatic description of each of them is proposed based on the anthropocentric approach. This approach is aimed at studying the linguistic expression of the speaker’s orientation in denotative reality and communication. In terms of expressing causation, this presupposes differentiation of ways to substantiate the speaker’s assertion, depending on different sources of causation: the speaker’s own inference (for); appeal to knowledge, common to all participants in communication (thi); justifying one objective fact with another (fordi), justifying the speaker’s own inference with an objective fact (eftersom). The etymology of conjunctions, as well as the temporal correlation of the predicates in causal and main clauses, allows us to determine the reasons for the speaker to organize the mental space of causation in different ways. In addition, the use of the conceptual blending concept allows us to explain why one conjunction is replaced by another in oral speech.


2017 ◽  
Author(s):  
David Soto ◽  
Mona Theodoraki ◽  
Pedro M. Paz-Alonso

AbstractMetacognition refers to our capacity to reflect upon our experiences, thoughts and actions. Metacognition processes are linked to cognitive control functions that allow keeping our actions on-task. But it is unclear how the human brain builds an internal model of one’s cognition and behaviour. We conducted 2 fMRI experiments in which brain activity was recorded ‘online’ as participants engaged in a memory-guided search task and then later ‘offline’ when participants introspected about their prior experience and cognitive states during performance. In Experiment 1 the memory cues were task-relevant while in Experiment 2 they were irrelevant. Across Experiments, the patterns of brain activity, including frontoparietal regions, were similar during on-task and introspection states. However the connectivity profile amongst frontoparietal areas was distint during introspection and modulated by the relevance of the memory cues. Introspection was also characterized by increased temporal correlation between the default-mode network (DMN), frontoparietal and dorsal attention networks and visual cortex. We suggest that memories of one’s own experience during task performance are encoded in large-scale patterns of brain activity and that coupling between DMN and frontoparietal control networks may be crucial to build an internal model of one’s behavioural performance.


2022 ◽  
Author(s):  
Haoran Cai ◽  
David Des Marais

Abstract Transcriptional Regulatory Networks (TRNs) orchestrate the timing, magnitude, and rate of organismal response to many environmental perturbations. Regulatory interactions in TRNs are dynamic but exploiting temporal variation to understand gene regulation requires a careful appreciation of both molecular biology and confounders in statistical analysis. Seeking to exploit the abundance of RNASequencing data now available, many past studies have relied upon population-level statistics from cross-sectional studies, estimating gene co-expression interactions to capture transient changes of regulatory activity. We show that population-level co-expression exhibits biases when capturing transient changes of regulatory activity in rice plants responding to elevated temperature. An apparent cause of this bias is regulatory saturation, the observation that detectable co-variance between a regulator and its target may be low as their transcript abundances are induced. This phenomenon appears to be particularly acute for rapid onset environmental stressors. However, exploiting temporal correlations appears to be a reliable means to detect transient regulatory activity following rapid onset environmental perturbations such as temperature stress. Such temporal correlation may lose information along a more gradual-onset stressor (e.g., dehydration). We here show that rice plants exposed to a dehydration stress exhibit temporal structure of coexpression in their response that can not be unveiled by temporal correlation alone. Collectively, our results point to the need to account for the nuances of molecular interactions and the possibly confounding effects that these can introduce into conventional approaches to study transcriptome datasets.


2015 ◽  
Vol 27 (6) ◽  
pp. 557-565 ◽  
Author(s):  
Eleazar Padrón ◽  
Pedro A. Hernández ◽  
Enrique Carmona ◽  
Nemesio M. Pérez ◽  
Gladys Melián ◽  
...  

AbstractThis is the first detailed analysis of a CO2 diffuse degassing time series from Deception volcano, South Shetland Islands, Antarctica, performed during an episode of anomalously high long-period (LP) seismicity. Diffuse CO2 emissions measured by an automatic geochemical station between 7 December 2009 and 13 February 2010 showed an excellent temporal agreement with the LP seismicity in December 2009. The absence of such a temporal correlation with the second burst of seismicity that occurred in late January 2010 suggests a different source for this LP activity. This was confirmed by analysis of seismic array data. The LP seismicity observed during December 2009 was caused by fluid-driven cracks that originated from pressure fluctuations in the volcano-hydrothermal systems beneath Deception volcano that were probably caused by a deep injection of undegassed magma before December 2009. The diffuse CO2 degassing data have provided evidence of the activation of at least two different sources of seismicity during the study period at Deception volcano.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 434
Author(s):  
Kerr D. G. Samson ◽  
Eleonore C. L. Bolle ◽  
Mariah Sarwat ◽  
Tim R. Dargaville ◽  
Ferry P. W. Melchels

Single-administration vaccine delivery systems are intended to improve the efficiency and efficacy of immunisation programs in both human and veterinary medicine. In this work, an osmotically triggered delayed delivery device was developed that was able to release a payload after a delay of approximately 21 days, in a consistent and reproducible manner. The device was constructed out of a flexible poly(ε-caprolactone) photo-cured network fabricated into a hollow tubular shape, which expelled approximately 10% of its total payload within 2 days after bursting. Characterisation of the factors that control the delay of release demonstrated that it was advantageous to adjust material permeability and device wall thickness over manipulation of the osmogent concentration in order to maintain reproducibility in burst delay times. The photo-cured poly(ε-caprolactone) network was shown to be fully degradable in vitro, and there was no evidence of cytotoxicity after 11 days of direct contact with primary dermal fibroblasts. This study provides strong evidence to support further development of flexible biomaterials with the aim of continuing improvement of the device burst characteristics in order to provide the greatest chance of the devices succeeding with in vivo vaccine booster delivery.


2018 ◽  
Vol 175 ◽  
pp. 05008 ◽  
Author(s):  
Takumi Iritani

Both direct and HAL QCD methods are currently used to study the hadron interactions in lattice QCD. In the direct method, the eigen-energy of two-particle is measured from the temporal correlation. Due to the contamination of excited states, however, the direct method suffers from the fake eigen-energy problem, which we call the “mirage problem,” while the HAL QCD method can extract information from all elastic states by using the spatial correlation. In this work, we further investigate systematic uncertainties of the HAL QCD method such as the quark source operator dependence, the convergence of the derivative expansion of the non-local interaction kernel, and the single baryon saturation, which are found to be well controlled. We also confirm the consistency between the HAL QCD method and the Lüscher’s finite volume formula. Based on the HAL QCD potential, we quantitatively confirm that the mirage plateau in the direct method is indeed caused by the contamination of excited states.


Sign in / Sign up

Export Citation Format

Share Document