scholarly journals A conserved ATG2-GABARAP interaction is critical for phagophore closure

2019 ◽  
Author(s):  
Mihaela Bozic ◽  
Luuk van den Bekerom ◽  
Beth A. Milne ◽  
Nicola Goodman ◽  
Lisa Roberston ◽  
...  

AbstractThe intracellular trafficking pathway, macroautophagy, acts as a recycling and disposal service that can be upregulated during periods of stress, to maintain cellular homeostasis. An essential transition point in the pathway is the sealing of the immature phagophore to form an autophagosome, isolating unwanted cargo prior to lysosomal degradation. However, little mechanistic detail is known about phagophore closure. Human ATG2A and ATG2B proteins, through their interaction with WIPI proteins, are thought to be key players during phagophore closure. We have identified a highly-conserved motif driving the interaction between human ATG2 and GABARAP proteins that is in close proximity to the ATG2-WIPI4 interaction site. We show that the ATG2-GABARAP interaction mutants are unable to close phagophores resulting in blocked autophagy, similar to ATG2A/ATG2B double knock-out cells. In contrast, the ATG2-WIPI4 interaction mutant fully restored phagophore closure and autophagy flux, similar to wild type ATG2. Taken together, we provide new mechanistic insights to the requirements for ATG2 function at the phagophore and suggest that an ATG2-GABARAP interaction is essential for phagophore closure, whereas ATG2-WIPI4 interaction is dispensable.


2018 ◽  
Vol 62 (2) ◽  
pp. 177-191 ◽  
Author(s):  
Roberta Palmulli ◽  
Guillaume van Niel

The release of extracellular vesicles such as exosomes provides an attractive intercellular communication pathway. Exosomes are 30- to 150-nm membrane vesicles that are generated in endosomal compartment and act as intercellular mediators in both physiological and pathological context. Despite the growing interest in exosome functions, the mechanisms responsible for their biogenesis and secretion are still not completely understood. Knowledge about these mechanisms is important because they control the composition, and hence the function and secretion, of exosomes. Exosomes are produced as intraluminal vesicles in extremely dynamic endosomal organelles, which undergo various maturation processes in order to form multivesicular endosomes. Notably, the function of multivesicular endosomes is balanced between exosome secretion and lysosomal degradation. In the present review, we present and discuss each intracellular trafficking pathway that has been reported or proposed as regulating exosome biogenesis, with a particular focus on the importance of endosomal dynamics in sorting out cargo proteins to exosomes and to the secretion of multivesicular endosomes. An overall picture reveals several key mechanisms, which mainly act at the crossroads of endosomal pathways as regulatory checkpoints of exosome biogenesis.



1996 ◽  
Vol 135 (6) ◽  
pp. 1749-1762 ◽  
Author(s):  
A O Johnson ◽  
R N Ghosh ◽  
K W Dunn ◽  
R Garippa ◽  
J Park ◽  
...  

The SDYQRL motif of the cytoplasmic domain of TGN38 is involved in targeting TGN38 from endosomes to the TGN. To create a system for studying this pathway, we replaced the native transferrin receptor (TR) internalization motif (YTRF) with the SDYQRL TGN-targeting motif. The advantages of using TR as a reporter molecule include the ability to monitor trafficking, in both biochemical and microscopy experiments, using the natural ligand transferrin. When expressed in CHO cells, the SDYQRL-TR construct accumulated in juxtanuclear tubules and vesicles that are in the vicinity of the TGN. The SDYQRL-TR-containing structures, however, do not colocalize with TGN markers (e.g., NBD ceramide), and therefore the SDYQRL motif is not sufficient to target the TR to the TGN. The morphology of the SDYQRL-TR-containing juxtanuclear structures is different from the recycling compartment found in cells expressing the wild-type TR. In addition, the SDYQRL-TR-containing juxtanuclear compartment is more acidic than the recycling compartment in cells expressing the wild-type TR. The juxtanuclear compartment, however, is a bona fide recycling compartment since SDYQRL-TR was recycled back to the cell surface at a rate comparable to the wild-type TR, and sphingomyelin and cellubrevin, both of which label all compartments of the endocytic recycling pathway, colocalize with SDYQRL-TR in the juxtanuclear structures. These findings demonstrate that expression of the SDYQRL-TR construct alters the morphology and pH of endocytic recycling compartments rather than selectively affecting the intracellular trafficking pathway of the SDYQRL-TR construct. Therefore, the SDYQRL trafficking motif is not simply a molecular address that targets proteins to the TGN, but it can play an active role in determining the physical characteristics of endosomal compartments.



2007 ◽  
Vol 45 (05) ◽  
Author(s):  
A Schnur ◽  
P Hegyi ◽  
V Venglovecz ◽  
Z Rakonczay ◽  
I Ignáth ◽  
...  


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jian Ma ◽  
Xueying Wang ◽  
Ting Zhou ◽  
Rui Hu ◽  
Huawei Zou ◽  
...  

AbstractThis study aimed to investigate the effects of cofD gene knock-out on the synthesis of coenzyme F420 and production of methane in Methanobrevibacter ruminantium (M. ruminantium). The experiment successfully constructed a cofD gene knock-out M. ruminantium via homologous recombination technology. The results showed that the logarithmic phase of mutant M. ruminantium (12 h) was lower than the wild-type (24 h). The maximum biomass and specific growth rate of mutant M. ruminantium were significantly lower (P < 0.05) than those of wild-type, and the maximum biomass of mutant M. ruminantium was approximately half of the wild-type; meanwhile, the proliferation was reduced. The synthesis amount of coenzyme F420 of M. ruminantium was significantly decreased (P < 0.05) after the cofD gene knock-out. Moreover, the maximum amount of H2 consumed and CH4 produced by mutant were 14 and 2% of wild-type M. ruminantium respectively. In conclusion, cofD gene knock-out induced the decreased growth rate and reproductive ability of M. ruminantium. Subsequently, the synthesis of coenzyme F420 was decreased. Ultimately, the production capacity of CH4 in M. ruminantium was reduced. Our research provides evidence that cofD gene plays an indispensable role in the regulation of coenzyme F420 synthesis and CH4 production in M. ruminantium.



Genetics ◽  
2000 ◽  
Vol 155 (3) ◽  
pp. 1105-1117 ◽  
Author(s):  
W John Haynes ◽  
Kit-Yin Ling ◽  
Robin R Preston ◽  
Yoshiro Saimi ◽  
Ching Kung

Abstract Pawn mutants of Paramecium tetraurelia lack a depolarization-activated Ca2+ current and do not swim backward. Using the method of microinjection and sorting a genomic library, we have cloned a DNA fragment that complements pawn-B (pwB/pwB). The minimal complementing fragment is a 798-bp open reading frame (ORF) that restores the Ca2+ current and the backward swimming when expressed. This ORF contains a 29-bp intron and is transcribed and translated. The translated product has two putative transmembrane domains but no clear matches in current databases. Mutations in the available pwB alleles were found within this ORF. The d4-95 and d4-96 alleles are single base substitutions, while d4-662 (previously pawn-D) harbors a 44-bp insertion that matches an internal eliminated sequence (IES) found in the wild-type germline DNA except for a single C-to-T transition. Northern hybridizations and RT-PCR indicate that d4-662 transcripts are rapidly degraded or not produced. A second 155-bp IES in the wild-type germline ORF excises at two alternative sites spanning three asparagine codons. The pwB ORF appears to be separated from a 5′ neighboring ORF by only 36 bp. The close proximity of the two ORFs and the location of the pwB protein as indicated by GFP-fusion constructs are discussed.



2000 ◽  
Vol 182 (5) ◽  
pp. 1304-1312 ◽  
Author(s):  
Angeles Zorreguieta ◽  
Christine Finnie ◽  
J. Allan Downie

ABSTRACT Rhizobium leguminosarum secretes two extracellular glycanases, PlyA and PlyB, that can degrade exopolysaccharide (EPS) and carboxymethyl cellulose (CMC), which is used as a model substrate of plant cell wall cellulose polymers. When grown on agar medium, CMC degradation occurred only directly below colonies of R. leguminosarum, suggesting that the enzymes remain attached to the bacteria. Unexpectedly, when a PlyA-PlyB-secreting colony was grown in close proximity to mutants unable to produce or secrete PlyA and PlyB, CMC degradation occurred below that part of the mutant colonies closest to the wild type. There was no CMC degradation in the region between the colonies. By growing PlyB-secreting colonies on a lawn of CMC-nondegrading mutants, we could observe a halo of CMC degradation around the colony. Using various mutant strains, we demonstrate that PlyB diffuses beyond the edge of the colony but does not degrade CMC unless it is in contact with the appropriate colony surface. PlyA appears to remain attached to the cells since no such diffusion of PlyA activity was observed. EPS defective mutants could secrete both PlyA and PlyB, but these enzymes were inactive unless they came into contact with an EPS+ strain, indicating that EPS is required for activation of PlyA and PlyB. However, we were unable to activate CMC degradation with a crude EPS fraction, indicating that activation of CMC degradation may require an intermediate in EPS biosynthesis. Transfer of PlyB to Agrobacterium tumefaciens enabled it to degrade CMC, but this was only observed if it was grown on a lawn ofR. leguminosarum. This indicates that the surface ofA. tumefaciens is inappropriate to activate CMC degradation by PlyB. Analysis of CMC degradation by other rhizobia suggests that activation of secreted glycanases by surface components may occur in other species.



Development ◽  
1999 ◽  
Vol 126 (13) ◽  
pp. 3015-3025 ◽  
Author(s):  
G.H. Fong ◽  
L. Zhang ◽  
D.M. Bryce ◽  
J. Peng

We previously demonstrated the essential role of the flt-1 gene in regulating the development of the cardiovascular system. While the inactivation of the flt-1 gene leads to a very severe disorganization of the vascular system, the primary defect at the cellular level was unknown. Here we report a surprising finding that it is an increase in the number of endothelial progenitors that leads to the vascular disorganization in flt-1(−/−) mice. At the early primitive streak stage (prior to the formation of blood islands), hemangioblasts are formed much more abundantly in flt-1(−/−) embryos. This increase is primarily due to an alteration in cell fate determination among mesenchymal cells, rather than to increased proliferation, migration or reduced apoptosis of flt-1(−/−) hemangioblasts. We further show that the increased population density of hemangioblasts is responsible for the observed vascular disorganization, based on the following observations: (1) both flt-1(−/−) and flt-1(+/+) endothelial cells formed normal vascular channels in chimaeric embryos; (2) wild-type endothelial cells formed abnormal vascular channels when their population density was significantly increased; and (3) in the absence of wild-type endothelial cells, flt-1(−/−) endothelial cells alone could form normal vascular channels when sufficiently diluted in a developing embryo. These results define the primary defect in flt-1(−/−) embryos at the cellular level and demonstrate the importance of population density of progenitor cells in pattern formation.



2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi206-vi206
Author(s):  
Tomohiro Yamasaki ◽  
Lumin Zhang ◽  
Tyrone Dowdy ◽  
Adrian Lita ◽  
Mark Gilbert ◽  
...  

Abstract BACKGROUND Increased de novo lipogenesis is a hallmark of cancer metabolism. In this study, we interrogated the role of de novo lipogenesis in IDH1 mutated glioma’s growth and identified the key enzyme, Stearoyl-CoA desaturase 1 (SCD1) that provides this growth advantage. MATERIALS ANDMETHODS We prepared genetically engineered glioma cell lines (U251 wild-type: U251WT and U251 IDHR132H mutant: U251RH) and normal human astrocytes (empty vector induced-NHA: NHAEV and IDHR132H mutant: NHARH). Lipid metabolic analysis was conducted by using LC-MS and Raman imaging microscopy. SCD1 expression was investigated by The Cancer Genome Atlas (TCGA) data analysis and Western-blotting method. Knock-out of SCD1 was conducted by using CRISPR/Cas9 and shRNA. RESULTS Previously, we showed that IDH1 mut glioma cells have increased monounsaturated fatty acids (MUFAs). TCGA data revealed IDH mut glioma shows significantly higher SCD1 mRNA expression than wild-type glioma. Our model systems of IDH1 mut (U251RH, NHARH) showed increased expression of this enzyme compared with their wild-type counterpart. Moreover, addition of D-2HG to U251WT increased SCD1 expression. Herein, we showed that inhibition of SCD1 with CAY10566 decreased relative cell number and sphere forming capacity in a dose-dependent manner. Furthermore, addition of MUFAs were able to rescue the SCD1 inhibitor induced-cell death and sphere forming capacity. Knock out of SCD1 revealed decreased cell proliferation and sphere forming ability. Decreasing lipid content from the media did not alter the growth of these cells, suggesting that glioma cells rely on de novo lipid synthesis rather than scavenging them from the microenvironment. CONCLUSION Overexpression of IDH mutant gene altered lipid composition in U251 cells to enrich MUFA levels and we confirmed that D-2HG caused SCD1 upregulation in U251WT. We demonstrated the glioma cell growth requires SCD1 expression and the results of the present study may provide novel insights into the role of SCD1 in IDH mut gliomas growth.





2007 ◽  
Vol 282 (39) ◽  
pp. 28485-28492 ◽  
Author(s):  
Soichiro Iwaki ◽  
Takamitsu Sano ◽  
Tomoko Takagi ◽  
Masako Osumi ◽  
Akio Kihara ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document