scholarly journals Analysis of Finnish blue mussel (Mytilus edulis L.) shell: Biomineral ultrastructure, organic-rich interfacial matrix and mechanical behavior

2019 ◽  
Author(s):  
Pezhman Mohammadi ◽  
Wolfgang Wagermaier ◽  
Merja Penttila ◽  
Markus B. Linder

AbstractStudying various marine biomineralized ultrastructures reveals the appearance of common architectural designs and building blocks in materials with fascinating mechanical properties that match perfectly to their biological tasks. Advanced mechanical properties of biological materials are attributed to evolutionary optimized molecular architectures and structural hierarchy. One example which has not yet been structurally investigated in great detail is the shell of Mytilus edulis L. (Finnish blue mussel) found in the archipelago of SW-Finland. Through a combination of various state-of-the-art techniques such as high-resolution electron microscopy imaging, Fourier-transformed infrared spectroscopy, powder X-ray diffraction, synchrotron wide-angle X-ray diffraction, nanoindentation and protein analysis, both the inorganic mineralized components as well as the organic-rich matrix were extensively characterized. We found very similar ultra-architecture across the shell of M. edulis L. as compared to the widely studied and closely related M. edulis. However, we also found interesting differences, for instance in the thickness and degree of orientation of the mineralized layers indicating dissimilar properties and related alterations in the biomineralization processes. Our results show that the shell of M. edulis L. has a gradient of mechanical properties, with the increase in the stiffness and the hardness from anterior to the posterior region of the shell. The shell is made from distinct and recognizable mineralized layers each varying in thickness and microstructural features. At posterior regions of the shell, moving from dorsal to ventral side, these layers are an oblique prismatic layer, a prismatic layer and a nacreous layer, in which the oblique prismatic layer is found to be the main and thickest mineralized layer of the shell. Probing the calcified rods in the oblique prismatic layer using high resolution SEM imaging revealed opening of channels with a diameters of 40-50 nm and lengths up to a micrometer extending through the rods. The chitin and protein have been found to be the main component of the organic-rich interfacial matrix as expected. Protein analysis showed two abundant proteins with sizes around 100 kD and 45 kD which likely not only regulates biomineralization and adhesion of the crystals but also governing the intrinsic-extrinsic toughening in the shell. Overall, this detailed analysis provides new structural insights into biomineralization of marine shells in general.

Author(s):  
Pezhman Mohammadi ◽  
Wolfgang Wagermaier ◽  
Merja Penttilä ◽  
Markus B. Linder

Studying various marine biomineralized ultrastructures reveals the appearance of common architectural designs and building blocks in materials with fascinating mechanical properties that match perfectly to their biological tasks. Advanced mechanical properties of biological materials are attributed to evolutionary optimized molecular architectures and structural hierarchy. One example which has not yet been structurally investigated in great detail is the shell of Mytilus edulis L. (Finnish blue mussel) found in the archipelago of SW-Finland. Through a combination of various state-of-the-art techniques such as high-resolution electron microscopy imaging, Fourier-transformed infrared spectroscopy, powder X-ray diffraction, synchrotron wide-angle X-ray diffraction, nanoindentation and protein analysis, both the inorganic mineralized components as well as the organic-rich matrix were extensively characterized. We found very similar ultra-architecture across the shell of M. edulis L. as compared to the widely studied and closely related M. edulis. However, we also found interesting differences, for instance in the thickness and degree of orientation of the mineralized layers indicating dissimilar properties and related alterations in the biomineralization processes. Our results show that the shell of M. edulis L. has a gradient of mechanical properties, with the increase in the stiffness and the hardness from anterior to the posterior region of the shell. The shell is made from distinct and recognizable mineralized layers each varying in thickness and microstructural features. At posterior regions of the shell, moving from dorsal to ventral side, these layers are an oblique prismatic layer, a prismatic layer and a nacreous layer, in which the oblique prismatic layer is found to be the main and thickest mineralized layer of the shell. Probing the calcified rods in the oblique prismatic layer using high resolution SEM imaging revealed opening of channels with a diameters of 40-50 nm and lengths up to a micrometer extending through the rods. The chitin and protein have been found to be the main component of the organic-rich interfacial matrix as expected. Protein analysis showed two abundant proteins with sizes around 100 kD and 45 kD which likely not only regulates biomineralization and adhesion of the crystals but also governing the intrinsic-extrinsic toughening in the shell. Overall, this detailed analysis provides new structural insights into biomineralization of marine shells in general.


Author(s):  
R. Gronsky

The phenomenon of clustering in Al-Ag alloys has been extensively studied since the early work of Guinierl, wherein the pre-precipitation state was characterized as an assembly of spherical, ordered, silver-rich G.P. zones. Subsequent x-ray and TEM investigations yielded results in general agreement with this model. However, serious discrepancies were later revealed by the detailed x-ray diffraction - based computer simulations of Gragg and Cohen, i.e., the silver-rich clusters were instead octahedral in shape and fully disordered, atleast below 170°C. The object of the present investigation is to examine directly the structural characteristics of G.P. zones in Al-Ag by high resolution transmission electron microscopy.


Author(s):  
K. H. Downing ◽  
S. G. Wolf ◽  
E. Nogales

Microtubules are involved in a host of critical cell activities, many of which involve transport of organelles through the cell. Different sets of microtubules appear to form during the cell cycle for different functions. Knowledge of the structure of tubulin will be necessary in order to understand the various functional mechanisms of microtubule assemble, disassembly, and interaction with other molecules, but tubulin has so far resisted crystallization for x-ray diffraction studies. Fortuitously, in the presence of zinc ions, tubulin also forms two-dimensional, crystalline sheets that are ideally suited for study by electron microscopy. We have refined procedures for forming the sheets and preparing them for EM, and have been able to obtain high-resolution structural data that sheds light on the formation and stabilization of microtubules, and even the interaction with a therapeutic drug.Tubulin sheets had been extensively studied in negative stain, demonstrating that the same protofilament structure was formed in the sheets and microtubules. For high resolution studies, we have found that the sheets embedded in either glucose or tannin diffract to around 3 Å.


2019 ◽  
Vol 107 (2) ◽  
pp. 207 ◽  
Author(s):  
Jaroslav Čech ◽  
Petr Haušild ◽  
Miroslav Karlík ◽  
Veronika Kadlecová ◽  
Jiří Čapek ◽  
...  

FeAl20Si20 (wt.%) powders prepared by mechanical alloying from different initial feedstock materials (Fe, Al, Si, FeAl27) were investigated in this study. Scanning electron microscopy, X-ray diffraction and nanoindentation techniques were used to analyze microstructure, phase composition and mechanical properties (hardness and Young’s modulus). Finite element model was developed to account for the decrease in measured values of mechanical properties of powder particles with increasing penetration depth caused by surrounding soft resin used for embedding powder particles. Progressive homogenization of the powders’ microstructure and an increase of hardness and Young’s modulus with milling time were observed and the time for complete homogenization was estimated.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1085
Author(s):  
Patricia Castaño-Rivera ◽  
Isabel Calle-Holguín ◽  
Johanna Castaño ◽  
Gustavo Cabrera-Barjas ◽  
Karen Galvez-Garrido ◽  
...  

Organoclay nanoparticles (Cloisite® C10A, Cloisite® C15) and their combination with carbon black (N330) were studied as fillers in chloroprene/natural/butadiene rubber blends to prepare nanocomposites. The effect of filler type and load on the physical mechanical properties of nanocomposites was determined and correlated with its structure, compatibility and cure properties using Fourier Transformed Infrared (FT-IR), X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and rheometric analysis. Physical mechanical properties were improved by organoclays at 5–7 phr. Nanocomposites with organoclays exhibited a remarkable increase up to 46% in abrasion resistance. The improvement in properties was attributed to good organoclay dispersion in the rubber matrix and to the compatibility between them and the chloroprene rubber. Carbon black at a 40 phr load was not the optimal concentration to interact with organoclays. The present study confirmed that organoclays can be a reinforcing filler for high performance applications in rubber nanocomposites.


Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 440
Author(s):  
Fabiana Pereira da Costa ◽  
Jucielle Veras Fernandes ◽  
Luiz Ronaldo Lisboa de Melo ◽  
Alisson Mendes Rodrigues ◽  
Romualdo Rodrigues Menezes ◽  
...  

Natural stones (limestones, granites, and marble) from mines located in northeastern Brazil were investigated to discover their potential for use in civil construction. The natural stones were characterized by chemical analysis, X-ray diffraction, differential thermal analysis, and optical microscopy. The physical-mechanical properties (apparent density, porosity, water absorption, compressive and flexural strength, impact, and abrasion) and chemical resistance properties were also evaluated. The results of the physical-mechanical analysis indicated that the natural stones investigated have the potential to be used in different environments (interior, exterior), taking into account factors such as people’s circulation and exposure to chemical agents.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1563
Author(s):  
Sofia Marquez-Bravo ◽  
Ingo Doench ◽  
Pamela Molina ◽  
Flor Estefany Bentley ◽  
Arnaud Kamdem Tamo ◽  
...  

Extremely high mechanical performance spun bionanocomposite fibers of chitosan (CHI), and cellulose nanofibers (CNFs) were successfully achieved by gel spinning of CHI aqueous viscous formulations filled with CNFs. The microstructural characterization of the fibers by X-ray diffraction revealed the crystallization of the CHI polymer chains into anhydrous chitosan allomorph. The spinning process combining acidic–basic–neutralization–stretching–drying steps allowed obtaining CHI/CNF composite fibers of high crystallinity, with enhanced effect at incorporating the CNFs. Chitosan crystallization seems to be promoted by the presence of cellulose nanofibers, serving as nucleation sites for the growing of CHI crystals. Moreover, the preferential orientation of both CNFs and CHI crystals along the spun fiber direction was revealed in the two-dimensional X-ray diffraction patterns. By increasing the CNF amount up to the optimum concentration of 0.4 wt % in the viscous CHI/CNF collodion, Young’s modulus of the spun fibers significantly increased up to 8 GPa. Similarly, the stress at break and the yield stress drastically increased from 115 to 163 MPa, and from 67 to 119 MPa, respectively, by adding only 0.4 wt % of CNFs into a collodion solution containing 4 wt % of chitosan. The toughness of the CHI-based fibers thereby increased from 5 to 9 MJ.m−3. For higher CNFs contents like 0.5 wt %, the high mechanical performance of the CHI/CNF composite fibers was still observed, but with a slight worsening of the mechanical parameters, which may be related to a minor disruption of the CHI matrix hydrogel network constituting the collodion and gel fiber, as precursor state for the dry fiber formation. Finally, the rheological behavior observed for the different CHI/CNF viscous collodions and the obtained structural, thermal and mechanical properties results revealed an optimum matrix/filler compatibility and interface when adding 0.4 wt % of nanofibrillated cellulose (CNF) into 4 wt % CHI formulations, yielding functional bionanocomposite fibers of outstanding mechanical properties.


2020 ◽  
Vol 7 (21) ◽  
pp. 4197-4221 ◽  
Author(s):  
Francisco Colmenero ◽  
Jakub Plášil ◽  
Jiří Sejkora

The structure, hydrogen bonding, X-ray diffraction pattern and mechanical properties of six important uranyl carbonate minerals, roubaultite, fontanite, sharpite, widenmannite, grimselite and čejkaite, are determined using first principles methods.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 218
Author(s):  
Xianjie Yuan ◽  
Xuanhui Qu ◽  
Haiqing Yin ◽  
Zaiqiang Feng ◽  
Mingqi Tang ◽  
...  

This present work investigates the effects of sintering temperature on densification, mechanical properties and microstructure of Al-based alloy pressed by high-velocity compaction. The green samples were heated under the flow of high pure (99.99 wt%) N2. The heating rate was 4 °C/min before 315 °C. For reducing the residual stress, the samples were isothermally held for one h. Then, the specimens were respectively heated at the rate of 10 °C/min to the temperature between 540 °C and 700 °C, held for one h, and then furnace-cooled to the room temperature. Results indicate that when the sintered temperature was 640 °C, both the sintered density and mechanical properties was optimum. Differential Scanning Calorimetry, X-ray diffraction of sintered samples, Scanning Electron Microscopy, Energy Dispersive Spectroscopy, and Transmission Electron Microscope were used to analyse the microstructure and phases.


Sign in / Sign up

Export Citation Format

Share Document