scholarly journals The physiological effects of non-invasive brain stimulation fundamentally differ across the human cortex

2019 ◽  
Author(s):  
Gabriel Castrillon ◽  
Nico Sollmann ◽  
Katarzyna Kurcyus ◽  
Adeel Razi ◽  
Sandro M. Krieg ◽  
...  

AbstractNon-invasive brain stimulation reliably modulates brain activity and symptoms of neuropsychiatric disorders. However, stimulation effects substantially vary across individuals and brain regions. We combined transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) to investigate the neuronal basis of inter-individual and inter-areal differences after TMS. We found that stimulating sensory and cognitive areas yielded fundamentally heterogeneous effects. Stimulation of occipital cortex enhanced brain-wide functional connectivity and biophysical modeling identified increased local inhibition and enhanced forward-signaling after TMS. Conversely, frontal stimulation decreased functional connectivity, associated with local disinhibition and disruptions of both feedforward and feedback connections. Finally, we identified brain-wide functional integration as a predictive marker for these heterogeneous stimulation effects in individual subjects. Together, our study suggests that modeling of local and global signaling parameters of a target area will improve the specificity of non-invasive brain stimulation for research and clinical applications.

2020 ◽  
Vol 6 (5) ◽  
pp. eaay2739 ◽  
Author(s):  
Gabriel Castrillon ◽  
Nico Sollmann ◽  
Katarzyna Kurcyus ◽  
Adeel Razi ◽  
Sandro M. Krieg ◽  
...  

Transcranial magnetic stimulation (TMS) is a noninvasive method to modulate brain activity and behavior in humans. Still, stimulation effects substantially vary across studies and individuals, thereby restricting the large-scale application of TMS in research or clinical settings. We revealed that low-frequency stimulation had opposite impact on the functional connectivity of sensory and cognitive brain regions. Biophysical modeling then identified a neuronal mechanism underlying these region-specific effects. Stimulation of the frontal cortex decreased local inhibition and disrupted feedforward and feedback connections. Conversely, identical stimulation increased local inhibition and enhanced forward signaling in the occipital cortex. Last, we identified functional integration as a macroscale network parameter to predict the region-specific effect of stimulation in individual subjects. In summary, we revealed how TMS modulation critically depends on the connectivity profile of target regions and propose an imaging marker to improve sensitivity of noninvasive brain stimulation for research and clinical applications.


2013 ◽  
Vol 110 (8) ◽  
pp. 1811-1821 ◽  
Author(s):  
Dobromir Rahnev ◽  
Peter Kok ◽  
Moniek Munneke ◽  
Linda Bahdo ◽  
Floris P. de Lange ◽  
...  

Continuous theta burst stimulation (cTBS) is a technique that allows for altering of brain activity. Research to date has focused on the effect of cTBS on the target area, but less is known about its effects on the resting state functional connectivity between different brain regions. We investigated this issue by applying cTBS to the occipital cortex and probing its influence in retinotopically defined regions in early visual cortex using functional MRI. We found that occipital cTBS reliably decreased the resting state functional connectivity (i.e., the correlation of spontaneous activity) between regions of the early visual cortex. In the context of a perceptual task, such an effect could mean that cTBS affects the strength of the perceptual signal, its variability, or both. We investigated this issue in a second experiment in which subjects performed a perceptual discrimination task and indicated their level of certainty on each trial. The results showed that occipital cTBS decreased both subjects' accuracy and confidence. Signal detection modeling suggested that these impairments resulted primarily from a decreased strength of the perceptual signal, with a nonsignificant trend of a decrease in signal variability. We discuss the implications of these experiments for understanding the mechanisms by which cTBS influences brain activity and perceptual processes.


Author(s):  
Hana Burianová

Determining the mechanisms that underlie neurocognitive aging, such as compensation or dedifferentiation, and facilitating the development of effective strategies for cognitive improvement is essential due to the steadily rising aging population. One approach to study the characteristics of healthy aging comprises the assessment of functional connectivity, delineating markers of age-related neurocognitive plasticity. Functional connectivity paradigms characterize complex one-to-many (or many-to-many) structure–function relations, as higher-level cognitive processes are mediated by the interaction among a number of functionally related neural areas rather than localized to discrete brain regions. Task-related or resting-state interregional correlations of brain activity have been used as reliable indices of functional connectivity, delineating age-related alterations in a number of large-scale brain networks, which subserve attention, working memory, episodic retrieval, and task-switching. Together with behavioral and regional activation studies, connectivity studies and modeling approaches have contributed to our understanding of the mechanisms of age-related reorganization of distributed functional networks; specifically, reduced neural specificity (dedifferentiation) and associated impairment in inhibitory control and compensatory neural recruitment.


2011 ◽  
Vol 31 (7) ◽  
pp. 1612-1622 ◽  
Author(s):  
Gaëtan Garraux ◽  
Mohamed A Bahri ◽  
Christian Lemaire ◽  
Christian Degueldre ◽  
Eric Salmon ◽  
...  

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment in a subgroup of medically refractory patients with Parkinson's disease (PD). Here, we compared resting-state 18F-fluorodeoxyglucose (FDG) positron emission tomography images in the stimulator off (DBS_OFF) and on (DBS_ON) conditions in eight PD patients in an unmedicated state, on average 2 years after bilateral electrode implantation. Global standardized uptake value (SUV) significantly increased by ∼11% in response to STN-DBS. To avoid any bias in the voxel-based analysis comparing DBS_ON and DBS_OFF conditions, individual scan intensity was scaled to a region where FDG-SUV did not differ significantly between conditions. The resulting FDG-SUV ratio (FDG-SUVR) was found to increase in many regions in response to STN-DBS including the target area of surgery, caudate nuclei, primary sensorimotor, and associative cortices. Contrary to previous studies, we could not find any regional decrease in FDG-SUVR. These findings were indirectly supported by comparing the extent of areas with depressed FDG-SUVR in DBS_OFF and DBS_ON relatively to 10 normal controls. Altogether, these novel results support the prediction that the effect of STN-DBS on brain activity in PD is unidirectional and consists in an increase in many subcortical and cortical regions.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Yu-Chen Chen ◽  
Jian Zhang ◽  
Xiao-Wei Li ◽  
Wenqing Xia ◽  
Xu Feng ◽  
...  

Objective. Subjective tinnitus is hypothesized to arise from aberrant neural activity; however, its neural bases are poorly understood. To identify aberrant neural networks involved in chronic tinnitus, we compared the resting-state functional magnetic resonance imaging (fMRI) patterns of tinnitus patients and healthy controls.Materials and Methods. Resting-state fMRI measurements were obtained from a group of chronic tinnitus patients (n=29) with normal hearing and well-matched healthy controls (n=30). Regional homogeneity (ReHo) analysis and functional connectivity analysis were used to identify abnormal brain activity; these abnormalities were compared to tinnitus distress.Results. Relative to healthy controls, tinnitus patients had significant greater ReHo values in several brain regions including the bilateral anterior insula (AI), left inferior frontal gyrus, and right supramarginal gyrus. Furthermore, the left AI showed enhanced functional connectivity with the left middle frontal gyrus (MFG), while the right AI had enhanced functional connectivity with the right MFG; these measures were positively correlated with Tinnitus Handicap Questionnaires (r=0.459,P=0.012andr=0.479,P=0.009, resp.).Conclusions. Chronic tinnitus patients showed abnormal intra- and interregional synchronization in several resting-state cerebral networks; these abnormalities were correlated with clinical tinnitus distress. These results suggest that tinnitus distress is exacerbated by attention networks that focus on internally generated phantom sounds.


2020 ◽  
Author(s):  
bingbo bao ◽  
xuyun hua ◽  
haifeng wei ◽  
pengbo luo ◽  
hongyi zhu ◽  
...  

Abstract Background: Amputation in adults is a serious condition and most patients were associated with the remapping of representations in motor and sensory brain network. Methods: The present study includes 8 healthy volunteers and 16 patients with amputation. We use resting-state fMRI to investigate the local and extent brain plasticity in patients suffering from amputation simultaneously. Both the amplitude of low-frequency fluctuations (ALFF) and degree centrality (DC) were used for the assessment of neuroplasticity in central level. Results: We described changes in spatial patterns of intrinsic brain activity and functional connectivity in amputees in the present study and we found that not only the sensory and motor cortex, but also the related brain regions involved in the functional plasticity after upper extremity deafferentation. Conclusion: Our findings showed local and extensive cortical changes in the sensorimotor and cognitive-related brain regions, which may imply the dysfunction in not only sensory and motor function, but also sensorimotor integration and motor plan. The activation and intrinsic connectivity in the brain changed a lot showed correlation with the deafferentation status.


2021 ◽  
Author(s):  
Mathilde Salagnon ◽  
Sandrine Cremona ◽  
Marc Joliot ◽  
Francesco d'Errico ◽  
Emmanuel Mellet

It has been suggested that engraved abstract patterns dating from the Middle and Lower Palaeolithic served as means of representation and communication. Identifying the brain regions involved in visual processing of these engravings can provide insights into their function. In this study, brain activity was measured during perception of the earliest known Palaeolithic engraved patterns and compared to natural patterns mimicking human-made engravings. Participants were asked to categorise marks as being intentionally made by humans or due to natural processes (e.g. erosion, root etching). To simulate the putative familiarity of our ancestors with the marks, the responses of expert archaeologists and control participants were compared, allowing characterisation of the effect of previous knowledge on both behaviour and brain activity in perception of the marks. Besides a set of regions common to both groups and involved in visual analysis and decision-making, the experts exhibited greater activity in the inferior part of the lateral occipital cortex, ventral occipitotemporal cortex, and medial thalamic regions. These results are consistent with those reported in visual expertise studies, and confirm the importance of the integrative visual areas in the perception of the earliest abstract engravings. The attribution of a natural rather than human origin to the marks elicited greater activity in the salience network in both groups, reflecting the uncertainty and ambiguity in the perception of, and decision-making for, natural patterns. The activation of the salience network might also be related to the process at work in the attribution of an intention to the marks. The primary visual area was not specifically involved in the visual processing of engravings, which argued against its central role in the emergence of engraving production.


2017 ◽  
Author(s):  
Janine D. Bijsterbosch ◽  
Mark W. Woolrich ◽  
Matthew F. Glasser ◽  
Emma C. Robinson ◽  
Christian F. Beckmann ◽  
...  

AbstractBrain connectivity is often considered in terms of the communication between functionally distinct brain regions. Many studies have investigated the extent to which patterns of coupling strength between multiple neural populations relates to behavior. For example, studies have used "functional connectivity fingerprints" to characterise individuals' brain activity. Here, we investigate the extent to which the exact spatial arrangement of cortical regions interacts with measures of brain connectivity. We find that the shape and exact location of brain regions interact strongly with the modelling of brain connectivity, and present evidence that the spatial arrangement of functional regions is strongly predictive of non-imaging measures of behaviour and lifestyle. We believe that, in many cases, cross-subject variations in the spatial configuration of functional brain regions are being interpreted as changes in functional connectivity. Therefore, a better understanding of these effects is important when interpreting the relationship between functional imaging data and cognitive traits.


Sign in / Sign up

Export Citation Format

Share Document