scholarly journals Ecological and genomic attributes of novel bacterial taxa that thrive in subsurface soil horizons

2019 ◽  
Author(s):  
Tess E. Brewer ◽  
Emma L. Aronson ◽  
Keshav Arogyaswamy ◽  
Sharon A. Billings ◽  
Jon K. Botthoff ◽  
...  

AbstractWhile most bacterial and archaeal taxa living in surface soils remain undescribed, this problem is exacerbated in deeper soils owing to the unique oligotrophic conditions found in the subsurface. Additionally, previous studies of soil microbiomes have focused almost exclusively on surface soils, even though the microbes living in deeper soils also play critical roles in a wide range of biogeochemical processes. We examined soils collected from 20 distinct profiles across the U.S. to characterize the bacterial and archaeal communities that live in subsurface soils and to determine whether there are consistent changes in soil microbial communities with depth across a wide range of soil and environmental conditions. We found that bacterial and archaeal diversity generally decreased with depth, as did the degree of similarity of microbial communities to those found in surface horizons. We observed five phyla that consistently increased in relative abundance with depth across our soil profiles: Chloroflexi, Nitrospirae, Euryarchaeota, and candidate phyla GAL15 and Dormibacteraeota (formerly AD3). Leveraging the unusually high abundance of Dormibacteraeota at depth, we assembled genomes representative of this candidate phylum and identified traits that are likely to be beneficial in low nutrient environments, including the synthesis and storage of carbohydrates, the potential to use carbon monoxide (CO) as a supplemental energy source, and the ability to form spores. Together these attributes likely allow members of the candidate phylum Dormibacteraeota to flourish in deeper soils and provide insight into the survival and growth strategies employed by the microbes that thrive in oligotrophic soil environments.ImportanceSoil profiles are rarely homogeneous. Resource availability and microbial abundances typically decrease with soil depth, but microbes found in deeper horizons are still important components of terrestrial ecosystems. By studying 20 soil profiles across the U.S., we documented consistent changes in soil bacterial and archaeal communities with depth. Deeper soils harbored distinct communities compared to the more commonly studied surface horizons. Most notably, we found that the candidate phylum Dormibacteraeota (formerly AD3) was often dominant in subsurface soils, and we used genomes from uncultivated members of this group to identify why these taxa are able to thrive in such resource-limited environments. Simply digging deeper into soil can reveal a surprising amount of novel microbes with unique adaptations to oligotrophic subsurface conditions.

mBio ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Tess E. Brewer ◽  
Emma L. Aronson ◽  
Keshav Arogyaswamy ◽  
Sharon A. Billings ◽  
Jon K. Botthoff ◽  
...  

ABSTRACT While most bacterial and archaeal taxa living in surface soils remain undescribed, this problem is exacerbated in deeper soils, owing to the unique oligotrophic conditions found in the subsurface. Additionally, previous studies of soil microbiomes have focused almost exclusively on surface soils, even though the microbes living in deeper soils also play critical roles in a wide range of biogeochemical processes. We examined soils collected from 20 distinct profiles across the United States to characterize the bacterial and archaeal communities that live in subsurface soils and to determine whether there are consistent changes in soil microbial communities with depth across a wide range of soil and environmental conditions. We found that bacterial and archaeal diversity generally decreased with depth, as did the degree of similarity of microbial communities to those found in surface horizons. We observed five phyla that consistently increased in relative abundance with depth across our soil profiles: Chloroflexi, Nitrospirae, Euryarchaeota, and candidate phyla GAL15 and Dormibacteraeota (formerly AD3). Leveraging the unusually high abundance of Dormibacteraeota at depth, we assembled genomes representative of this candidate phylum and identified traits that are likely to be beneficial in low-nutrient environments, including the synthesis and storage of carbohydrates, the potential to use carbon monoxide (CO) as a supplemental energy source, and the ability to form spores. Together these attributes likely allow members of the candidate phylum Dormibacteraeota to flourish in deeper soils and provide insight into the survival and growth strategies employed by the microbes that thrive in oligotrophic soil environments. IMPORTANCE Soil profiles are rarely homogeneous. Resource availability and microbial abundances typically decrease with soil depth, but microbes found in deeper horizons are still important components of terrestrial ecosystems. By studying 20 soil profiles across the United States, we documented consistent changes in soil bacterial and archaeal communities with depth. Deeper soils harbored communities distinct from those of the more commonly studied surface horizons. Most notably, we found that the candidate phylum Dormibacteraeota (formerly AD3) was often dominant in subsurface soils, and we used genomes from uncultivated members of this group to identify why these taxa are able to thrive in such resource-limited environments. Simply digging deeper into soil can reveal a surprising number of novel microbes with unique adaptations to oligotrophic subsurface conditions.


2018 ◽  
Author(s):  
Blaire Steven ◽  
Cheryl R. Kuske

AbstractBiological soil crusts (biocrusts) are microbial communities that are a feature of arid surface soils worldwide. In drylands where precipitation is pulsed and ephemeral, the ability of biocrust microbiota to rapidly initiate metabolic activity is critical to their survival. Community gene expression was compared after a short duration (1 hour) wetting pulse in both intact and soils disturbed by chronic foot trampling.Across the metatranscriptomes the majority of transcripts were cyanobacterial in origin, suggesting that cyanobacteria accounted for the bulk of the transcriptionally active cells. Chronic trampling substantially altered the functional profile of the metatranscriptomes, specifically resulting in a significant decrease in transcripts for nitrogen fixation. Soil depth (biocrust and below crust) was a relatively small factor in differentiating the metatranscriptomes, suggesting that the metabolically active bacteria were similar between shallow soil horizons. The dry samples were consistently enriched for hydrogenase genes, indicating that molecular hydrogen may serve as an energy source for the desiccated soil communities. The water pulse was associated with a restructuring of the metatranscriptome, particularly for the biocrusts. Biocrusts increased transcripts for photosynthesis and carbon fixation, suggesting a rapid resuscitation upon wetting. In contrast, the trampled surface soils showed a much smaller response to wetting, indicating that trampling altered the metabolic response of the community. Finally, several biogeochemical cycling genes in carbon and nitrogen cycling were assessed for their change in abundance due to wetting in the biocrusts. Different transcripts encoding the same gene product did not show a consensus response, with some more abundant in dry or wet biocrusts, highlighting the challenges in relating transcript abundance to biogeochemical cycling rates.These observations demonstrate that metatranscriptome sequencing was able to distinguish alterations in the function of arid soil microbial communities at two varying temporal scales, a long-term ecosystems disturbance through foot trampling, and a short term wetting pulse. Thus, community metatranscriptomes have the potential to inform studies on the response and resilience of biocrusts to various environmental perturbations.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 173
Author(s):  
Huiling Guan ◽  
Jiangwen Fan ◽  
Haiyan Zhang ◽  
Warwick Harris

Soil erosion is prevalent in karst areas, but few studies have compared the differences in the drivers for soil microbial communities among karst ecosystems with different soil depths, and most studies have focused on the local scale. To fill this research gap, we investigated the upper 20 cm soil layers of 10 shallow–soil depth (shallow–SDC, total soil depth less than 100 cm) and 11 deep–soil depth communities (deep–SDC, total soil depth more than 100 cm), covering a broad range of vegetation types, soils, and climates. The microbial community characteristics of both the shallow–SDC and deep–SDC soils were tested by phospholipid fatty acid (PLFAs) analysis, and the key drivers of the microbial communities were illustrated by forward selection and variance partitioning analysis. Our findings demonstrated that more abundant soil nutrients supported higher fungal PLFA in shallow–SDC than in deep–SDC (p < 0.05). Furthermore, stronger correlation between the microbial community and the plant–soil system was found in shallow–SDC: the pure plant effect explained the 43.2% of variance in microbial biomass and 57.8% of the variance in the ratio of Gram–positive bacteria to Gram–negative bacteria (G+/G−), and the ratio of fungi to total bacteria (F/B); the pure soil effect accounted for 68.6% variance in the microbial diversity. The ratio of microbial PLFA cyclopropyl to precursors (Cy/Pr) and the ratio of saturated PLFA to monounsaturated PLFA (S/M) as indicators of microbial stress were controlled by pH, but high pH was not conducive to microorganisms in this area. Meanwhile, Cy/Pr in all communities was >0.1, indicating that microorganisms were under environmental stress. Therefore, the further ecological restoration of degraded karst communities is needed to improve their microbial communities.


el–Hayah ◽  
2012 ◽  
Vol 1 (4) ◽  
Author(s):  
Prihastuti Prihastuti

<p>Soils are made up of organic and an organic material. The organic soil component contains all the living creatures in the soil and the dead ones in various stages of decomposition.  Biological activity in soil helps to recycle nutrients, decompose organic matter making nutrient available for plant uptake, stabilize humus, and form soil particles.<br />The extent of the diversity of microbial in soil is seen to be critical to the maintenance of soil health and quality, as a wide range of microbial is involved in important soil functions.  That ecologically managed soils have a greater quantity and diversity of soil microbial. The two main drivers of soil microbial community structure, i.e., plant type and soil type, are thought to exert their function in a complex manner. The fact that in some situations the soil and in others the plant type is the key factor determining soil microbial diversity is related to their complexity of the microbial interactions in soil, including interactions between microbial and soil and microbial and plants. <br />The basic premise of organic soil stewardship is that all plant nutrients are present in the soil by maintaining a biologically active soil environment. The diversity of microbial communities has on ecological function and resilience to disturbances in soil ecosystems. Relationships are often observed between the extent of microbial diversity in soil, soil and plant quality and ecosystem sustainability. Agricultural management can be directed toward maximizing the quality of the soil microbial community in terms of disease suppression, if it is possible to shift soil microbial communities.</p><p>Keywords: structure, microbial, implication, sustainable agriculture<br /><br /></p>


Forests ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 550 ◽  
Author(s):  
Huili Feng ◽  
Jiahuan Guo ◽  
Weifeng Wang ◽  
Xinzhang Song ◽  
Shuiqiang Yu

Understanding the composition and diversity of soil microorganisms that typically mediate the soil biogeochemical cycle is crucial for estimating greenhouse gas flux and mitigating global changes in plantation forests. Therefore, the objectives of this study were to investigate changes in diversity and relative abundance of bacteria and archaea with soil profiles and the potential factors influencing the vertical differentiation of microbial communities in a poplar plantation. We investigated soil bacterial and archaeal community compositions and diversities by 16S rRNA gene Illumina MiSeq sequencing at different depths of a poplar plantation forest in Chenwei forest farm, Sihong County, Jiangsu, China. More than 882,422 quality-filtered 16S rRNA gene sequences were obtained from 15 samples, corresponding to 34 classified phyla and 68 known classes. Ten major bacterial phyla and two archaeal phyla were found. The diversity of bacterial and archaeal communities decreased with depth of the plantation soil. Analysis of variance (ANOVA) of relative abundance of microbial communities exhibited that Nitrospirae, Verrucomicrobia, Latescibacteria, GAL15, SBR1093, and Euryarchaeota had significant differences at different depths. The transition zone of the community composition between the surface and subsurface occurred at 10–20 cm. Overall, our findings highlighted the importance of depth with regard to the complexity and diversity of microbial community composition in plantation forest soils.


2013 ◽  
Vol 6 (2) ◽  
pp. 811-835 ◽  
Author(s):  
P. R. Kormos ◽  
D. Marks ◽  
C. J. Williams ◽  
H. P. Marshall ◽  
P. Aishlin ◽  
...  

Abstract. A comprehensive hydroclimatic data set is presented for the 2011 water year to improve understanding of hydrologic processes in the rain-snow transition zone. This type of dataset is extremely rare in scientific literature because of the quality and quantity of soil depth, soil texture, soil moisture, and soil temperature data. Standard meteorological and snow cover data for the entire 2011 water year are included, which include several rain-on-snow events. Surface soil textures and soil depths from 57 points are presented as well as soil texture profiles from 14 points. Meteorological data include continuous hourly shielded, unshielded, and wind corrected precipitation, wind speed, air temperature, relative humidity, dew point temperature, and incoming solar and thermal radiation data. Sub-surface data included are hourly soil moisture data from multiple depths from 7 soil profiles within the catchment, and soil temperatures from multiple depths from 2 soil profiles. Hydrologic response data include hourly stream discharge from the catchment outlet weir, continuous snow depths from one location, intermittent snow depths from 5 locations, and snow depth and density data from ten weekly snow surveys. Though it represents only a single water year, the presentation of both above and below ground hydrologic condition makes it one of the most detailed and complete hydro-climatic datasets from the climatically sensitive rain-snow transition zone for a wide range of modeling and descriptive studies. Data are available at doi:10.1594/PANGAEA.819837.


Forests ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 275 ◽  
Author(s):  
Tiehang Wu ◽  
Ashley Gray ◽  
Gan Liu ◽  
Hilary Kaminski ◽  
Bolanle Osi Efa ◽  
...  

Microbial communities found in soil ecosystems play important roles in decomposing organic materials and recycling nutrients. A clear understanding on how biotic and abiotic factors influence the microbial community and its functional role in ecosystems is fundamental to terrestrial biogeochemistry and plant production. The purpose of this study was to investigate microbial communities and functional genes involved in nitrogen cycling as a function of groundwater depth (deep and shallow), tree species (pine and eucalypt), and season (spring and fall). Soil fungal, bacterial, and archaeal communities were determined by length heterogeneity polymerase chain reaction (LH-PCR). Soil ammonia oxidation archaeal (AOA) amoA gene, ammonia oxidation bacterial (AOB) amoA gene, nitrite oxidoreductase nrxA gene, and denitrifying bacterial narG, nirK, nirS, and nosZ genes were further studied using PCR and denaturing gradient gel electrophoresis (DGGE). Soil fungal and bacterial communities remained similar between tree species and groundwater depths, respectively, regardless of season. Soil archaeal communities remained similar between tree species but differed between groundwater depths in the spring only. Archaeal amoA for nitrification and bacterial nirK and nosZ genes for denitrification were detected in DGGE, whereas bacterial amoA and nrxA for nitrification and bacterial narG and nirS genes for denitrification were undetectable. The detected nitrification and denitrification communities varied significantly with groundwater depth. There was no significant difference of nitrifying archaeal amoA or denitrifying nirK communities between different tree species regardless of season. The seasonal difference in microbial communities and functional genes involved in nitrogen cycling suggests microorganisms exhibit seasonal dynamics that likely impact relative rates of nitrification and denitrification.


2015 ◽  
Vol 12 (16) ◽  
pp. 13819-13857 ◽  
Author(s):  
M. Bomberg ◽  
T. Lamminmäki ◽  
M. Itävaara

Abstract. The microbial diversity in oligotrophic isolated crystalline Fennoscandian Shield bedrock fracture groundwaters is great but the core community has not been identified. Here we characterized the bacterial and archaeal communities in 12 water conductive fractures situated at depths between 296 and 798 m by high throughput amplicon sequencing using the Illumina HiSeq platform. The great sequencing depth revealed that up to 95 and 99 % of the bacterial and archaeal communities, respectively, were composed of only a few common species, i.e. the core microbiome. However, the remaining rare microbiome contained over 3 and 6 fold more bacterial and archaeal taxa. Several clusters of co-occurring rare taxa were identified, which correlated significantly with physicochemical parameters, such as salinity, concentration of inorganic or organic carbon, sulphur, pH and depth. The metabolic properties of the microbial communities were predicted using PICRUSt. The rough prediction showed that the metabolic pathways included commonly fermentation, fatty acid oxidation, glycolysis/gluconeogenesis, oxidative phosphorylation and methanogenesis/anaerobic methane oxidation, but carbon fixation through the Calvin cycle, reductive TCA cycle and the Wood-Ljungdahl pathway was also predicted. The rare microbiome is an unlimited source of genomic functionality in all ecosystems. It may consist of remnants of microbial communities prevailing in earlier conditions on Earth, but could also be induced again if changes in their living conditions occur. In this study only the rare taxa correlated with any physicochemical parameters. Thus these microorganisms can respond to environmental change caused by physical or biological factors that may lead to alterations in the diversity and function of the microbial communities in crystalline bedrock environments.


2021 ◽  
Author(s):  
Augusto M. Amendola ◽  
Francielli V. Peres ◽  
Julio C. F. Moreira ◽  
Paulo Y. G. Sumida ◽  
Fabiana S. Paula ◽  
...  

ABSTRACTThe assembly and successional processes of microbial communities inhabiting deep-sea whale and wood falls are highly complex and vastly unknown, as a myriad of factors may affect the development of a chemosynthetic-based ecosystem on these organic islands. The chemoautotrophy supported by organic substrates is the basis of long-lasting ecosystems, considered biodiversity hotspots in the oligotrophic deep sea. Understanding how these microbial communities develop and the factors affecting them could shed light on processes related to the maintenance of biodiversity in this environment. We performed a whale- and wood-fall experiment in the southwest Atlantic on the Brazilian continental margin and investigated biofilm-forming bacterial and archaeal communities colonising these substrates, deployed at 1500 and 3300 m depth. The composition of the prokaryotic communities shared some similarities with previously reported organic falls in the north Pacific and the Mediterranean Sea, mainly regarding sulphur oxidising chemolithotrophic taxa from the phyla Campylobacterota and Proteobacteria. Communities were found to be highly different between the organic substrates, as whale fall associated biofilms presented a higher dominance of sulphur oxidising chemolithotrophs. We also observed a significant difference between the two sites, with the whale associated communities at the 1500 isobath presenting a faster establishment of the chemosynthetic taxa.


2020 ◽  
Vol 96 (11) ◽  
Author(s):  
Rui Xu ◽  
Xiaoxu Sun ◽  
Hanzhi Lin ◽  
Feng Han ◽  
Enzong Xiao ◽  
...  

ABSTRACT Antimony mining has resulted in considerable pollution to the soil environment. Although studies on antinomy contamination have been conducted, its effects on vertical soil profiles and depth-resolved microbial communities remain unknown. The current study selected three vertical soil profiles (0–2 m) from the world's largest antimony mining area to characterize the depth-resolved soil microbiota and investigate the effects of mining contamination on microbial adaptation. Results demonstrated that contaminated soil profiles showed distinct depth-resolved effects when compared to uncontaminated soil profiles. As soil depth increased, the concentrations of antimony and arsenic gradually declined in the contaminated soil profiles. Acidobacteria, Chloroflexi, Proteobacteria and Thaumarchaeota were the most variable phyla from surface to deep soil. The co-occurrence networks were loosely connected in surface soil, but obviously recovered and were well-connected in deep soil. The metagenomic results indicated that microbial metabolic potential also changed with soil depth. Genes encoding C metabolism pathways were negatively correlated with antimony and arsenic concentrations. Abundances of arsenic-related genes were enriched by severe contamination, but reduced with soil depth. Overall, soil depth-resolved characteristics are often many meters deep and such effects affected the indigenous microbial communities, as well as their metabolic potential due to different contaminants along vertical depths.


Sign in / Sign up

Export Citation Format

Share Document