scholarly journals Restoring ancestral phenotypes by reduction of plasticity is a general pattern in gene expression during adaptation to different stressors in Tribolium castaneum

2019 ◽  
Author(s):  
Eva L. Koch ◽  
Frédéric Guillaume

AbstractPlasticity and evolution are two processes individuals to respond to environmental change, but how both are related and impact each other is still controversial. We studied plastic and evolutionary responses in gene expression of Tribolium castaneum after exposure to new environments that differed from ancestral conditions in temperature, humidity or both. Using experimental evolution with ten replicated lines per condition, we were able to demonstrate adaptation after 20 generations. We measured gene expression in each condition in adapted selection lines and control lines to infer evolutionary and plastic changes. We found more evidence for changes in mean expression (shift in the intercept of reaction norms) in adapted lines than for changes in plasticity (shifts in slopes). Plasticity was mainly preserved and was responsible for a large part of the phenotypic divergence in expression between ancestral and new conditions. However, we found that genes with the largest evolutionary changes in expression also evolved reduced plasticity and often showed expression levels closer to the ancestral stage. Results obtained in the three different conditions were similar suggesting that restoration of ancestral expression levels during adaptation is a general evolutionary pattern. We increased the sample size in the most stressful condition and were then able to detect a positive correlation between proportion of genes with reversion of the ancestral plastic response and mean fitness per selection line.

Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 92
Author(s):  
Joon Seon Lee ◽  
Lexuan Gao ◽  
Laura Melissa Guzman ◽  
Loren H. Rieseberg

Approximately 10% of agricultural land is subject to periodic flooding, which reduces the growth, survivorship, and yield of most crops, reinforcing the need to understand and enhance flooding resistance in our crops. Here, we generated RNA-Seq data from leaf and root tissue of domesticated sunflower to explore differences in gene expression and alternative splicing (AS) between a resistant and susceptible cultivar under both flooding and control conditions and at three time points. Using a combination of mixed model and gene co-expression analyses, we were able to separate general responses of sunflower to flooding stress from those that contribute to the greater tolerance of the resistant line. Both cultivars responded to flooding stress by upregulating expression levels of known submergence responsive genes, such as alcohol dehydrogenases, and slowing metabolism-related activities. Differential AS reinforced expression differences, with reduced AS frequencies typically observed for genes with upregulated expression. Significant differences were found between the genotypes, including earlier and stronger upregulation of the alcohol fermentation pathway and a more rapid return to pre-flooding gene expression levels in the resistant genotype. Our results show how changes in the timing of gene expression following both the induction of flooding and release from flooding stress contribute to increased flooding tolerance.


2015 ◽  
pp. 71-78 ◽  
Author(s):  
X. ZENG ◽  
J. WU ◽  
Q. WU ◽  
J. ZHANG

Previous studies in our laboratory reported L-malate as a free radical scavenger in aged rats. To investigate the antioxidant mechanism of L-malate in the mitochondria, we analyzed the change in gene expression of two malate-aspartate shuttle (MAS)-related carried proteins (AGC, aspartate/glutamate carrier and OMC, oxoglutarate/malate carrier) in the inner mitochondrial membrane, and three antioxidant enzymes (CAT, SOD, and GSH-Px) in the mitochondria. The changes in gene expression of these proteins and enzymes were examined by real-time RT-PCR in the heart and liver of aged rats treated with L-malate. L-malate was orally administered in rats continuously for 30 days using a feeding atraumatic needle. We found that the gene expression of OMC and GSH-Px mRNA in the liver increased by 39 % and 38 %, respectively, in the 0.630 g/kg L-malate treatment group than that in the control group. The expression levels of SOD mRNA in the liver increased by 39 %, 56 %, and 78 % in the 0.105, 0.210, and 0.630 g/kg L-malate treatment groups, respectively. No difference were observed in the expression levels of AGC, OMC, CAT, SOD, and GSH-Px mRNAs in the heart of rats between the L-malate treatment and control groups. These results predicted that L-malate may increase the antioxidant capacity of mitochondria by enhancing the expression of mRNAs involved in the MAS and the antioxidant enzymes.


1969 ◽  
Vol 40 (1) ◽  
pp. 16-33
Author(s):  
Nelson Rangel ◽  
Milena Rondón ◽  
Sandra Ramírez

Background: The incidence of malign melanoma tumours has increased more rapidly than any other type of cancer; this has intensified the searching for tools that facilitate early detection of melanoma. Microphthalmia associated transcription factor (MITF) is currently known as being a master melanocyte regulator. The article analyses MITF gene expression in peripheral blood of individuals suffering from melanoma, compared to people without any type of cancer and some cell lines. Materials and methods: Thirty one samples of peripheral blood were used: 19 from patients having melanoma and 12 from healthy people. Then RNA was extracted from these samples. MITF and housekeeping genes (b2M and GAPDH) expression levels were then quantified by real-time PCR. Five cell lines were also used to determine the MITF expression. Results: MITF gene expression could be observed in all individuals, though no statistical significant differences were found among expression levels in the groups studied (p=0.09). Even so, MITF expression in the group of patients suffering from melanoma was much more variable than that observed in the group of cancer-free people. Expression was detected in the cell line AGS (gastric adenocarcinoma), not yet described. Conclusions: MITF gene expression levels were detected in the peripheral blood from both people suffering from melanoma and people without any type of cancer. However, variability in the number of molecules in MITF gene expression was observed in people with melanoma, this suggests the presence of tumour cells in circulation.


2021 ◽  
Author(s):  
Daniel Wood ◽  
Jon A Holmberg ◽  
Owen Gregory Osborne ◽  
Andrew J Helmsetter ◽  
Luke T Dunning ◽  
...  

Phenotypic plasticity in ancestral populations is hypothesised to facilitate adaptation, but evidence supporting its contribution is piecemeal and often contradictory. Further, whether ancestral plasticity increases the probability of parallel genetic and phenotypic adaptive changes has not been explored. The most general finding is that nearly all ancestral gene expression plasticity is reversed following adaptation, but this is usually examined transcriptome-wide rather than focused on the genes directly involved in adaptation. We investigated the contribution of ancestral plasticity to adaptive evolution of gene expression in two independently evolved lineages of zinc-tolerant Silene uniflora. We found that the general pattern of reversion is driven by the absence of a widespread stress response in zinc-adapted plants compared to ancestral, zinc-sensitive plants. Our experiments show that reinforcement of ancestral plasticity plays an influential role in the evolution of plasticity in derived populations and, surprisingly, one third of constitutive differences between ecotypes are the result of genetic assimilation of ancestral plasticity. Ancestral plasticity also increases the chance that genes are recruited repeatedly during adaptation. However, despite a high degree of convergence in gene expression levels between independently adapted lineages, genes with ancestral plasticity are as likely to have similar expression levels in adapted populations as genes without. Overall, these results demonstrate that ancestral plasticity does play an important role in adaptive parallel evolution, particularly via genetic assimilation across evolutionary replicates.


2009 ◽  
Vol 58 (11) ◽  
pp. 1470-1473 ◽  
Author(s):  
Paula Kurola ◽  
Terhi Tapiainen ◽  
Tarja Kaijalainen ◽  
Matti Uhari ◽  
Annika Saukkoriipi

Xylitol is a sugar alcohol that inhibits the growth and adherence of Streptococcus pneumoniae. In clinical trials, xylitol has been shown to decrease the occurrence of acute otitis media in day-care children but did not decrease nasopharyngeal carriage of the pneumococci. It has also been shown that xylitol affects the ultrastructure of the pneumococcal capsule. Here, it was hypothesized that xylitol might affect the expression of pneumococcal capsular genes. Capsule gene expression levels were studied in 24 clinical pneumococcal isolates and one ATCC strain (49619) by using a real-time RT-PCR method targeting the mRNA of the second gene of the pneumococcal capsular locus, the cpsB gene. The isolates were exposed to 5 % glucose, 5 % xylitol and control medium (brain heart infusion medium containing 10 % fetal bovine serum) for 2 h. cpsB gene expression levels were measured by using a relative quantification method with calibrator normalization where the 16S rRNA gene of pneumococcus was used as a reference. Exposure to xylitol lowered cpsB gene expression levels significantly compared with those in the control (P=0.035) and glucose (P=0.011) media. This finding supports previous results where exposure to xylitol changed the ultrastructure of the pneumococcal capsule and could explain further the high clinical efficacy of xylitol in preventing otitis media.


2018 ◽  
Author(s):  
Eva L. Koch ◽  
Frédéric Guillaume

AbstractGene expression is known to be highly responsive to the environment and to vary between species or populations under divergent selection. Yet, its contribution to the process of adaption is still controversial despite growing evidence that differences in gene regulation contribute to adaptive divergence. While most studies so far investigated evolved plasticity in already diverged populations, phenotypic selection acting on gene expression at the onset of adaptation to an environmental change has not been characterized. Here, we combined fitness and whole-transcriptome data in a large-scale experiment with Tribolium castaneum to investigate gene expression and fitness responses to drought, heat and their combination. Fitness was reduced by both stressors and their combined effects were nearly additive. Accordingly, expression data showed that both stressors were acting independently and did not interfere physiologically. With expression and fitness within the same individuals, we estimated selection on single gene expression levels. We found that variation in fitness can be attributed to gene expression variation. Selection intensities on expression levels differed between conditions and were opposite between control and stress conditions, showing evidence of evolutionary trade-offs. Plastic expression changes were mostly adaptive when affected by heat stress, and partially non-adaptive when affected by drought.


2021 ◽  
Author(s):  
Esra Hatipoglu ◽  
Omur Gunaldi ◽  
Buruc Erkan ◽  
Ayla Avcikurt ◽  
Meral Mert ◽  
...  

Abstract PurposeIn sporadic pituitary adenomas the role of Ubiquitin-specific protease 8 (USP8) is not clearly defined. Although mutations in USP8 gene are known to cause corticotroph adenomas, whether changes in expression of USP8 in other pituitary adenomas have not been clarified, yet. In this study we addressed the changes in USP8 gene expression levels in pituitary adenomas relative to non-adenomatous brain tissue.MethodsUSP8 gene expression analysis was performed on a total of 43 tissue samples from human pituitary adenomas and on 16 tissue samples from non-pituitary brain tissues (control group). Adenomatous tissues and control tissues were assessed for quantification of RNA expression of USP8.The levels of USP8 gene expression were determined relative to those in control group.ResultsUSP8 gene expression levels in pituitary adenomas (PA) were 3.7 times higher than the levels in control brain tissues (CBT) (p = 0.002). Levels of USP8 expression in secertory PA’s were significantly higher in comparison to the levels in CBT (p = 0.002).ConsclusionsPresent findings support that USP8 gene expression levels may contribute to pitutary tumorigenesis and hormonogenesis.


2014 ◽  
Vol 23 (03) ◽  
pp. 207-211
Author(s):  
C. Kasch ◽  
A. Osterberg ◽  
Thordis Granitzka ◽  
T. Lindner ◽  
M. Haenle ◽  
...  

SummaryThe RANK/RANKL/OPG system plays an important role in the regulation of bone metabolism and bony integration around implants. The aim of this study was to analyse gene expression of OPG, RANK, and RANKL in regenerating bone during implant integration. Additionally, the effect of intermittent para - thyroid hormone (PTH) treatment was analysed. A titanium chamber was implanted in the proximal tibiae of 48 female rats. The animals received either human PTH or saline solution (NaCl). After 21 and 42 days, RNA was isolated from tissue adjacent to the implant and expression of RANK, RANKL, and OPG was analysed. After 21 days, very low expression levels of all genes were shown. In contrast, increased gene expression after 42 days was determined. Expression of RANK and RANKL was lower than that for OPG. The lower expression levels after 21 days might be due to still ossifying, fibrotic tissue around the titanium chamber. An increased OPG synthesis rate associated with decreased RANKL expression after 42 days revealed bone-forming processes. Despite significant differences in gene expression between the time points, only slight differences were observed between application of intermittent PTH and NaCl after a period of 42 days.


Sign in / Sign up

Export Citation Format

Share Document