scholarly journals A large single-participant fMRI dataset for probing brain responses to naturalistic stimuli in space and time

2019 ◽  
Author(s):  
K. Seeliger ◽  
R. P. Sommers ◽  
U. Güçlü ◽  
S. E. Bosch ◽  
M. A. J. van Gerven

AbstractVisual and auditory representations in the human brain have been studied with encoding, decoding and reconstruction models. Representations from convolutional neural networks have been used as explanatory models for these stimulus-induced hierarchical brain activations. However, none of the fMRI datasets currently available has adequate amounts of data for sufficiently sampling their representations. We recorded a densely sampled large fMRI dataset (TR=700 ms) in a single individual exposed to spatiotemporal visual and auditory naturalistic stimuli (30 episodes of BBC’s Doctor Who). The data consists of 120.830 whole-brain volumes (approx. 23 h) of single-presentation data (full episodes, training set) and 1.178 volumes (11 min) of repeated narrative short episodes (test set, 22 repetitions), recorded with fixation over a period of six months. This rich dataset can be used widely to study the way the brain represents audiovisual input across its sensory hierarchies.

2019 ◽  
Author(s):  
Niels Trusbak Haumann ◽  
Minna Huotilainen ◽  
Peter Vuust ◽  
Elvira Brattico

AbstractThe accuracy of electroencephalography (EEG) and magnetoencephalography (MEG) is challenged by overlapping sources from within the brain. This lack of accuracy is a severe limitation to the possibilities and reliability of modern stimulation protocols in basic research and clinical diagnostics. As a solution, we here introduce a theory of stochastic neuronal spike timing probability densities for describing the large-scale spiking activity in neural networks, and a novel spike density component analysis (SCA) method for isolating specific neural sources. Three studies are conducted based on 564 cases of evoked responses to auditory stimuli from 94 human subjects each measured with 60 EEG electrodes and 306 MEG sensors. In the first study we show that the large-scale spike timing (but not non-encephalographic artifacts) in MEG/EEG waveforms can be modeled with Gaussian probability density functions with high accuracy (median 99.7%-99.9% variance explained), while gamma and sine functions fail describing the MEG and EEG waveforms. In the second study we confirm that SCA can isolate a specific evoked response of interest. Our findings indicate that the mismatch negativity (MMN) response is accurately isolated with SCA, while principal component analysis (PCA) fails supressing interference from overlapping brain activity, e.g. from P3a and alpha waves, and independent component analysis (ICA) distorts the evoked response. Finally, we confirm that SCA accurately reveals inter-individual variation in evoked brain responses, by replicating findings relating individual traits with MMN variations. The findings of this paper suggest that the commonly overlapping neural sources in single-subject or patient data can be more accurately separated by applying the introduced theory of large-scale spike timing and method of SCA in comparison to PCA and ICA.Significance statementElectroencephalography (EEG) and magnetoencelopraphy (MEG) are among the most applied non-invasive brain recording methods in humans. They are the only methods to measure brain function directly and in time resolutions smaller than seconds. However, in modern research and clinical diagnostics the brain responses of interest cannot be isolated, because of interfering signals of other ongoing brain activity. For the first time, we introduce a theory and method for mathematically describing and isolating overlapping brain signals, which are based on prior intracranial in vivo research on brain cells in monkey and human neural networks. Three studies mutually support our theory and suggest that a new level of accuracy in MEG/EEG can achieved by applying the procedures presented in this paper.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yaoda Xu ◽  
Maryam Vaziri-Pashkam

AbstractConvolutional neural networks (CNNs) are increasingly used to model human vision due to their high object categorization capabilities and general correspondence with human brain responses. Here we evaluate the performance of 14 different CNNs compared with human fMRI responses to natural and artificial images using representational similarity analysis. Despite the presence of some CNN-brain correspondence and CNNs’ impressive ability to fully capture lower level visual representation of real-world objects, we show that CNNs do not fully capture higher level visual representations of real-world objects, nor those of artificial objects, either at lower or higher levels of visual representations. The latter is particularly critical, as the processing of both real-world and artificial visual stimuli engages the same neural circuits. We report similar results regardless of differences in CNN architecture, training, or the presence of recurrent processing. This indicates some fundamental differences exist in how the brain and CNNs represent visual information.


1998 ◽  
Vol 37 (01) ◽  
pp. 59-63 ◽  
Author(s):  
C. Ohmann ◽  
M. Eskelinen ◽  
M. Juhola ◽  
E. Pesonen

Abstract:The use of an artificial neural network system was studied in the diagnosis of acute abdominal pain, especially acute appendicitis, with patients from Finland and Germany. Separate Learning Vector Quantization (LVQ) neural networks were trained with a training set from each database and also with a combined database. Each neural network was evaluated separately with a test set of cases from each database. With the combined database different neighborhood methods were compared to find the optimal choice for this decision-making problem. The acute appendicitis cases of the Finnish test data set were classified well with all the networks, but the cases of the German test set were difficult to classify for the Finnish network. The use of larger neighborhoods increased the sensitivity of the classification by nearly 10%. The differences in the results of the Finnish and German databases suggest that there are differences in the data collection or patient populations between centers. Therefore, care must be taken when using decision-support systems which have been developed in other centers. Neural networks offer a method to evaluate differences between databases. With the use of larger neighborhoods, the effects of the differences on the accuracy of the classification can be partly diminished.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Mohammad Haekal ◽  
Henki Bayu Seta ◽  
Mayanda Mega Santoni

Untuk memprediksi kualitas air sungai Ciliwung, telah dilakukan pengolahan data-data hasil pemantauan secara Online Monitoring dengan menggunakan Metode Data Mining. Pada metode ini, pertama-tama data-data hasil pemantauan dibuat dalam bentuk tabel Microsoft Excel, kemudian diolah menjadi bentuk Pohon Keputusan yang disebut Algoritma Pohon Keputusan (Decision Tree) mengunakan aplikasi WEKA. Metode Pohon Keputusan dipilih karena lebih sederhana, mudah dipahami dan mempunyai tingkat akurasi yang sangat tinggi. Jumlah data hasil pemantauan kualitas air sungai Ciliwung yang diolah sebanyak 5.476 data. Hasil klarifikasi dengan Pohon Keputusan, dari 5.476 data ini diperoleh jumlah data yang mengindikasikan sungai Ciliwung Tidak Tercemar sebanyak 1.059 data atau sebesar 19,3242%, dan yang mengindikasikan Tercemar sebanyak 4.417 data atau 80,6758%. Selanjutnya data-data hasil pemantauan ini dievaluasi menggunakan 4 Opsi Tes (Test Option) yaitu dengan Use Training Set, Supplied Test Set, Cross-Validation folds 10, dan Percentage Split 66%. Hasil evaluasi dengan 4 opsi tes yang digunakan ini, semuanya menunjukkan tingkat akurasi yang sangat tinggi, yaitu diatas 99%. Dari data-data hasil peneltian ini dapat diprediksi bahwa sungai Ciliwung terindikasi sebagai sungai tercemar bila mereferensi kepada Peraturan Pemerintah Republik Indonesia nomor 82 tahun 2001 dan diketahui pula bahwa penggunaan aplikasi WEKA dengan Algoritma Pohon Keputusan untuk mengolah data-data hasil pemantauan dengan mengambil tiga parameter (pH, DO dan Nitrat) adalah sangat akuran dan tepat. Kata Kunci : Kualitas air sungai, Data Mining, Algoritma Pohon Keputusan, Aplikasi WEKA.


Author(s):  
Anil K. Seth

Consciousness is perhaps the most familiar aspect of our existence, yet we still do not know its biological basis. This chapter outlines a biomimetic approach to consciousness science, identifying three principles linking properties of conscious experience to potential biological mechanisms. First, conscious experiences generate large quantities of information in virtue of being simultaneously integrated and differentiated. Second, the brain continuously generates predictions about the world and self, which account for the specific content of conscious scenes. Third, the conscious self depends on active inference of self-related signals at multiple levels. Research following these principles helps move from establishing correlations between brain responses and consciousness towards explanations which account for phenomenological properties—addressing what can be called the “real problem” of consciousness. The picture that emerges is one in which consciousness, mind, and life, are tightly bound together—with implications for any possible future “conscious machines.”


2009 ◽  
Vol 7 (4) ◽  
pp. 846-856 ◽  
Author(s):  
Andrey Toropov ◽  
Alla Toropova ◽  
Emilio Benfenati

AbstractUsually, QSPR is not used to model organometallic compounds. We have modeled the octanol/water partition coefficient for organometallic compounds of Na, K, Ca, Cu, Fe, Zn, Ni, As, and Hg by optimal descriptors calculated with simplified molecular input line entry system (SMILES) notations. The best model is characterized by the following statistics: n=54, r2=0.9807, s=0.677, F=2636 (training set); n=26, r2=0.9693, s=0.969, F=759 (test set). Empirical criteria for the definition of the applicability domain for these models are discussed.


2021 ◽  
Vol 9 (8) ◽  
pp. 786
Author(s):  
Damjan Bujak ◽  
Tonko Bogovac ◽  
Dalibor Carević ◽  
Suzana Ilic ◽  
Goran Lončar

The volume of material required for the construction of new and expansion of existing beach sites is an important parameter for coastal management. This information may play a crucial role when deciding which beach sites to develop. This work examines whether artificial neural networks (ANNs) can predict the spatial variability of nourishment requirements on the Croatian coast. We use survey data of the nourishment volume requirements and gravel diameter from 2016 to 2020, fetch length, beach area and orientation derived from national maps which vary from location to location due to a complex coastal configuration on the East Adriatic coast, and wind, tide, and rainfall data from nearby meteorological/oceanographic stations to train and test ANNs. The results reported here confirm that an ANN can adequately predict the spatial variability of observed nourishment volumes (R and MSE for the test set equal 0.87 and 2.24 × 104, respectively). The contributions of different parameters to the ANN’s predictive ability were examined. Apart from the most obvious parameters like the beach length and the beach areas, the fetch length proved to be the most important input contribution to ANN’s predictive ability, followed by the beach orientation. Fetch length and beach orientation are parameters governing the wind wave height and direction and hence are proxies for forcing.


2021 ◽  
Vol 11 (5) ◽  
pp. 2039
Author(s):  
Hyunseok Shin ◽  
Sejong Oh

In machine learning applications, classification schemes have been widely used for prediction tasks. Typically, to develop a prediction model, the given dataset is divided into training and test sets; the training set is used to build the model and the test set is used to evaluate the model. Furthermore, random sampling is traditionally used to divide datasets. The problem, however, is that the performance of the model is evaluated differently depending on how we divide the training and test sets. Therefore, in this study, we proposed an improved sampling method for the accurate evaluation of a classification model. We first generated numerous candidate cases of train/test sets using the R-value-based sampling method. We evaluated the similarity of distributions of the candidate cases with the whole dataset, and the case with the smallest distribution–difference was selected as the final train/test set. Histograms and feature importance were used to evaluate the similarity of distributions. The proposed method produces more proper training and test sets than previous sampling methods, including random and non-random sampling.


1989 ◽  
Vol 1 (3) ◽  
pp. 201-222 ◽  
Author(s):  
Adam N. Mamelak ◽  
J. Allan Hobson

Bizarreness is a cognitive feature common to REM sleep dreams, which can be easily measured. Because bizarreness is highly specific to dreaming, we propose that it is most likely brought about by changes in neuronal activity that are specific to REM sleep. At the level of the dream plot, bizarreness can be defined as either discontinuity or incongruity. In addition, the dreamer's thoughts about the plot may be logically deficient. We propose that dream bizarreness is the cognitive concomitant of two kinds of changes in neuronal dynamics during REM sleep. One is the disinhibition of forebrain networks caused by the withdrawal of the modulatory influences of norepinephrine (NE) and serotonin (5HT) in REM sleep, secondary to cessation of firing of locus coeruleus and dorsal raphe neurons. This aminergic demodulation can be mathematically modeled as a shift toward increased error at the outputs from neural networks, and these errors might be represented cognitively as incongruities and/or discontinuities. We also consider the possibility that discontinuities are the cognitive concomitant of sudden bifurcations or “jumps” in the responses of forebrain neuronal networks. These bifurcations are caused by phasic discharge of pontogeniculooccipital (PGO) neurons during REM sleep, providing a source of cholinergic modulation to the forebrain which could evoke unpredictable network responses. When phasic PGO activity stops, the resultant activity in the brain may be wholly unrelated to patterns of activity dominant before such phasic stimulation began. Mathematically such sudden shifts from one pattern of activity to a second, unrelated one is called a bifurcation. We propose that the neuronal bifurcations brought about by PGO activity might be represented cognitively as bizarre discontinuities of dream plot. We regard these proposals as preliminary attempts to model the relationship between dream cognition and REM sleep neurophysiology. This neurophysiological model of dream bizarreness may also prove useful in understanding the contributions of REM sleep to the developmental and experiential plasticity of the cerebral cortex.


Sign in / Sign up

Export Citation Format

Share Document