scholarly journals Histone H2AK119 Mono-Ubiquitination is Essential for Polycomb-Mediated Transcriptional Repression

2019 ◽  
Author(s):  
Simone Tamburri ◽  
Elisa Lavarone ◽  
Daniel Fernández-Pérez ◽  
Marika Zanotti ◽  
Daria Manganaro ◽  
...  

ABSTRACTThe major function of Polycomb group proteins (PcG) is to maintain transcriptional repression to preserve cellular identity. This is exerted by two distinct repressive complexes, PRC1 and PRC2, that modify histones by depositing H2AK119ub1 and H3K27me3, respectively. Both complexes are essential for development and are deregulated in several types of human tumors. PRC1 and PRC2 exist in different variants and show a complex regulatory cross-talk. However, the contribution that H2AK119ub1 plays in mediating PcG repressive functions remains largely controversial. Coupling an inducible system with the expression of a fully catalytic inactive RING1B mutant, we demonstrated that H2AK119ub1 deposition is essential to maintain PcG-target genes repressed in ESC. Loss of H2AK119ub1 induced a rapid displacement of PRC2 activity and a loss of H3K27me3 deposition. This affected both PRC2.1 and PRC2.2 variants and further correlated with a strong displacement and destabilization of canonical PRC1. Finally, we find that variant PRC1 forms can sense H2AK119ub1 deposition, which contributes to their stabilization specifically at sites where this modification is highly enriched. Overall our data place H2AK119ub1 deposition as central hub that mount PcG repressive machineries to preserve cell transcriptional identity.

2015 ◽  
Vol 211 (3) ◽  
pp. 533-551 ◽  
Author(s):  
Elisa Cesarini ◽  
Chiara Mozzetta ◽  
Fabrizia Marullo ◽  
Francesco Gregoretti ◽  
Annagiusi Gargiulo ◽  
...  

Beyond its role in providing structure to the nuclear envelope, lamin A/C is involved in transcriptional regulation. However, its cross talk with epigenetic factors—and how this cross talk influences physiological processes—is still unexplored. Key epigenetic regulators of development and differentiation are the Polycomb group (PcG) of proteins, organized in the nucleus as microscopically visible foci. Here, we show that lamin A/C is evolutionarily required for correct PcG protein nuclear compartmentalization. Confocal microscopy supported by new algorithms for image analysis reveals that lamin A/C knock-down leads to PcG protein foci disassembly and PcG protein dispersion. This causes detachment from chromatin and defects in PcG protein–mediated higher-order structures, thereby leading to impaired PcG protein repressive functions. Using myogenic differentiation as a model, we found that reduced levels of lamin A/C at the onset of differentiation led to an anticipation of the myogenic program because of an alteration of PcG protein–mediated transcriptional repression. Collectively, our results indicate that lamin A/C can modulate transcription through the regulation of PcG protein epigenetic factors.


1994 ◽  
Vol 14 (3) ◽  
pp. 1721-1732 ◽  
Author(s):  
C A Bunker ◽  
R E Kingston

The Polycomb group (Pc-G) genes are essential for maintaining the proper spatially restricted expression pattern of the homeotic loci during Drosophila development. The Pc-G proteins appear to function at target loci to maintain a state of transcriptional repression. The murine oncogene bmi-1 has significant homology to the Pc-G gene Posterior sex combs (Psc) and a highly related gene, Suppressor two of zeste [Su(z)2]. We show here that the proteins encoded by bmi-1 and the Pc-G genes Polycomb (Pc) and Psc as well as Su(z)2 mediate repression in mammalian cells when targeted to a promoter by LexA in a cotransfection system. These fusion proteins repress activator function by as much as 30-fold, and the effect on different activation domains is distinct for each Pc-G protein. Repression is observed when the LexA fusion proteins are bound directly adjacent to activator binding sites and also when bound 1,700 bases from the promoter. These data demonstrate that the products of the Pc-G genes can significantly repress activator function on transiently introduced DNA. We suggest that this function contributes to the stable repression of targeted loci during development.


2019 ◽  
Vol 10 (10) ◽  
Author(s):  
Pinakin Pandya ◽  
Minesh Jethva ◽  
Eitan Rubin ◽  
Ramon Y. Birnbaum ◽  
Alex Braiman ◽  
...  

Abstract Protein kinase C (PKC)-interacting cousin of thioredoxin (PICOT; also termed glutaredoxin 3 (Grx3; Glrx3)) is a ubiquitous protein that can interact with the embryonic ectoderm development (EED) protein via each of its two C-terminal PICOT/Grx homology domains. Since EED is a Polycomb-Group protein and a core component of the polycomb repressive complex 2 (PRC2), we tested the involvement of PICOT in the regulation of PRC2-mediated H3 lysine 27 trimethylation (H3K27me3), transcription and translation of selected PRC2 target genes. A fraction of the cellular PICOT protein was found in the nuclei of leukemia cell lines, where it was associated with the chromatin. In addition, PICOT coimmunoprecipitated with chromatin-residing EED derived from Jurkat and COS-7 cell nuclei. PICOT knockdown led to a reduced H3K27me3 mark and a decrease in EED and EZH2 at the CCND2 gene promoter. In agreement, PICOT-deficient T cells exhibited a significant increase in CCND2 mRNA and protein expression. Since elevated expression levels of PICOT were reported in several different tumors and correlated in the current studies with decreased transcription and translation of the CCND2 gene, we tested whether this opposite correlation exists in human cancers. Data from the Cancer Genome Atlas (TCGA) database indicated statistically significant negative correlation between PICOT and CCND2 in eight different human tumors where the highest correlation was in lung (p = 8.67E−10) and pancreatic (p = 1.06E−5) adenocarcinoma. Furthermore, high expression of PICOT and low expression of CCND2 correlated with poor patient survival in five different types of human tumors. The results suggest that PICOT binding to chromatin-associated EED modulates the H3K27me3 level at the CCND2 gene promoter which may be one of the potential mechanisms for regulation of cyclin D2 expression in tumors. These findings also indicate that a low PICOT/CCND2 expression ratio might serve as a good predictor of patient survival in selected human cancers.


1999 ◽  
Vol 215 (2) ◽  
pp. 375-387 ◽  
Author(s):  
Yoshino Yoshitake ◽  
Tiffani L. Howard ◽  
Jan L. Christian ◽  
Stanley M. Hollenberg

2013 ◽  
Author(s):  
Xudong Wu ◽  
Eva M. Riising ◽  
Itys Comet ◽  
Kristian Helin

2021 ◽  
Vol 7 (29) ◽  
pp. eabg1556
Author(s):  
Elnaz Ghotbi ◽  
Piao Ye ◽  
Taylor Ervin ◽  
Anni Kum ◽  
Judith Benes ◽  
...  

Polycomb-group (PcG) proteins are epigenetic regulators that maintain the transcriptional repression of target genes following their initial repression by transcription factors. PcG target genes are repressed in some cells, but active in others. Therefore, a mechanism must exist by which PcG proteins distinguish between the repressed and active states and only assemble repressive chromatin environments at target genes that are repressed. Here, we present experimental evidence that the repressed state of a Drosophila PcG target gene, giant (gt), is not identified by the presence of a repressor. Rather, de novo establishment of PcG-mediated silencing at gt is the default state that is prevented by the presence of an activator or coactivator, which may inhibit the catalytic activity of Polycomb-repressive complex 2 (PRC2).


Genetics ◽  
2020 ◽  
Vol 214 (3) ◽  
pp. 623-634
Author(s):  
Elnaz Ghotbi ◽  
Kristina Lackey ◽  
Vicki Wong ◽  
Katie T. Thompson ◽  
Evan G. Caston ◽  
...  

Polycomb-group (PcG) proteins are evolutionarily conserved epigenetic regulators whose primary function is to maintain the transcriptional repression of target genes. Recruitment of Drosophila melanogaster PcG proteins to target genes requires the presence of one or more Polycomb Response Elements (PREs). The functions or necessity for more than one PRE at a gene are not clear and individual PREs at some loci may have distinct regulatory roles. Various combinations of sequence-specific DNA-binding proteins are present at a given PRE, but only Pleiohomeotic (Pho) is present at all strong PREs. The giant (gt) locus has two PREs, a proximal PRE1 and a distal PRE2. During early embryonic development, Pho binds to PRE1 ∼30-min prior to stable binding to PRE2. This observation indicated a possible dependence of PRE2 on PRE1 for PcG recruitment; however, we find here that PRE2 recruits PcG proteins and maintains transcriptional repression independently of Pho binding to PRE1. Pho-like (Phol) is partially redundant with Pho during larval development and binds to the same DNA sequences in vitro. Although binding of Pho to PRE1 is dependent on the presence of consensus Pho-Phol-binding sites, Phol binding is less so and appears to play a minimal role in recruiting other PcG proteins to gt. Another PRE-binding protein, Sp1/Kruppel-like factor, is dependent on the presence of Pho for PRE1 binding. Further, we show that, in addition to silencing gene expression, PcG proteins dampen transcription of an active gene.


2007 ◽  
Vol 18 (2) ◽  
pp. 536-546 ◽  
Author(s):  
Wei-Jian Guo ◽  
Sonal Datta ◽  
Vimla Band ◽  
Goberdhan P. Dimri

Polycomb group (PcG) protein Bmi-1 is an important regulator of cell proliferation. It regulates cellular senescence and proliferation of cells via the transcriptional repression of INK4a/ARF locus and other target genes. Here, we report that Mel-18, a PcG ring finger protein (PCGF) transcriptionally down-regulates Bmi-1. Furthermore, the expression of Bmi-1 and Mel-18 inversely correlates in proliferating and senescent human fibroblasts. Bmi-1 down-regulation by Mel-18 results in accelerated senescence and shortening of the replicative life span in normal human cells. Importantly, using promoter-reporter, chromatin immunoprecipitation, and quantitative real-time primary transcript RT-PCR assays, and an RNA interference approach, we demonstrate that Bmi-1 is a bona fide target of c-Myc oncoprotein. Finally, our data suggest that Mel-18 regulates Bmi-1 expression during senescence via down-regulation of c-Myc. These studies link c-Myc and polycomb function in cell proliferation and senescence.


1994 ◽  
Vol 14 (3) ◽  
pp. 1721-1732
Author(s):  
C A Bunker ◽  
R E Kingston

The Polycomb group (Pc-G) genes are essential for maintaining the proper spatially restricted expression pattern of the homeotic loci during Drosophila development. The Pc-G proteins appear to function at target loci to maintain a state of transcriptional repression. The murine oncogene bmi-1 has significant homology to the Pc-G gene Posterior sex combs (Psc) and a highly related gene, Suppressor two of zeste [Su(z)2]. We show here that the proteins encoded by bmi-1 and the Pc-G genes Polycomb (Pc) and Psc as well as Su(z)2 mediate repression in mammalian cells when targeted to a promoter by LexA in a cotransfection system. These fusion proteins repress activator function by as much as 30-fold, and the effect on different activation domains is distinct for each Pc-G protein. Repression is observed when the LexA fusion proteins are bound directly adjacent to activator binding sites and also when bound 1,700 bases from the promoter. These data demonstrate that the products of the Pc-G genes can significantly repress activator function on transiently introduced DNA. We suggest that this function contributes to the stable repression of targeted loci during development.


Sign in / Sign up

Export Citation Format

Share Document