scholarly journals Biodegradable harmonophores for targeted high-resolution in vivo tumor imaging

2019 ◽  
Author(s):  
Ali Yasin Sonay ◽  
Sine Yaganoglu ◽  
Martina Konantz ◽  
Claire Teulon ◽  
Sandro Sieber ◽  
...  

AbstractOptical imaging probes have played a major role in detecting and monitoring of a variety of diseases1. In particular, nonlinear optical imaging probes, such as second harmonic generating (SHG) nanoprobes, hold great promise as clinical contrast agents, as they can be imaged with little background signal and unmatched long-term photostability2. As their chemical composition often includes transition metals, the use of inorganic SHG nanoprobes can raise long-term health concerns. Ideally, contrast agents for biomedical applications should be degraded in vivo without any long-term toxicological consequences to the organism. Here, we developed biodegradable harmonophores (bioharmonophores) that consist of polymer-encapsulated, self-assembling peptides that generate a strong SHG signal. When functionalized with tumor cell surface markers, these reporters can target single cancer cells with high detection sensitivity in zebrafish embryos in vivo. Thus, bioharmonophores will enable an innovative approach to cancer treatment using targeted high-resolution optical imaging for diagnostics and therapy.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Matthew D. Laramie ◽  
Benjamin L. Fouts ◽  
William M. MacCuaig ◽  
Emmanuel Buabeng ◽  
Meredith A. Jones ◽  
...  

AbstractOptoacoustic imaging is a new biomedical imaging technology with clear benefits over traditional optical imaging and ultrasound. While the imaging technology has improved since its initial development, the creation of dedicated contrast agents for optoacoustic imaging has been stagnant. Current exploration of contrast agents has been limited to standard commercial dyes that have already been established in optical imaging applications. While some of these compounds have demonstrated utility in optoacoustic imaging, they are far from optimal and there is a need for contrast agents with tailored optoacoustic properties. The synthesis, encapsulation within tumor targeting silica nanoparticles and applications in in vivo tumor imaging of optoacoustic contrast agents are reported.


2016 ◽  
Vol 55 (02) ◽  
pp. 51-62 ◽  
Author(s):  
S. Hermann ◽  
M. Schäfers ◽  
C. Höltke ◽  
A. Faust

SummaryOptical imaging has long been considered a method for histological or microscopic investigations. Over the last 15 years, however, this method was applied for preclinical molecular imaging and, just recently, was also able to show its principal potential for clinical applications (e.g. fluorescence-guided surgery). Reviewing the development and preclinical evaluation of new fluorescent dyes and target-specific dye conjugates, these often show characteristic patterns of their routes of excretion and biodistribution, which could also be interesting for the development and optimization of radiopharmaceuticals. Especially ionic charges show a great influence on biodistribution and netcharge and charge-distribution on a conjugate often determines unspecific binding or background signals in liver, kidney or intestine, and other organs.Learning from fluorescent probe behaviour in vivo and translating this knowledge to radio-pharmaceuticals might be useful to further optimize emerging and existing radiopharmaceuticals with respect to their biodistribution and thereby availability for binding to their targets.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
John R. Eisenbrey ◽  
Anush Sridharan ◽  
Ji-Bin Liu ◽  
Flemming Forsberg

Nonlinear contrast-enhanced ultrasound imaging schemes strive to suppress tissue signals in order to better visualize nonlinear signals from blood-pooling ultrasound contrast agents. Because tissue does not generate a subharmonic response (i.e., signal at half the transmit frequency), subharmonic imaging has been proposed as a method for isolating ultrasound microbubble signals while suppressing surrounding tissue signals. In this paper, we summarize recent advances in the use of subharmonic imagingin vivo. These advances include the implementation of subharmonic imaging on linear and curvilinear arrays, intravascular probes, and three-dimensional probes for breast, renal, liver, plaque, and tumor imaging.


2016 ◽  
Vol 4 (33) ◽  
pp. 5560-5566 ◽  
Author(s):  
Lesan Yan ◽  
Huiquan Wang ◽  
Anqi Zhang ◽  
Calvin Zhao ◽  
Yongping Chen ◽  
...  

The IR780@NPs exhibited excellent characteristics for in vivo imaging with a long circulation time and high retention in tumor and sentinel lymph node.


2011 ◽  
Vol 10 (6) ◽  
pp. 7290.2011.00018 ◽  
Author(s):  
Julia Eva Mathejczyk ◽  
Jutta Pauli ◽  
Christian Dullin ◽  
Joanna Napp ◽  
Lutz-F. Tietze ◽  
...  

Labeling of RGD peptides with near-infrared fluorophores yields optical probes for noninvasive imaging of tumors overexpressing αvβ3 integrins. An important prerequisite for optimum detection sensitivity in vivo is strongly absorbing and highly emissive probes with a known fluorescence lifetime. The RGD-Cy5.5 optical probe was derived by coupling Cy5.5 to a cyclic arginine–glycine–aspartic acid–d-phenylalanine–lysine (RGDfK) peptide via an aminohexanoic acid spacer. Spectroscopic properties of the probe were studied in different matrices in comparison to Cy5.5. For in vivo imaging, human glioblastoma cells were subcutaneously implanted into nude mice, and in vivo fluorescence intensity and lifetime were measured. The fluorescence quantum yield and lifetime of Cy5.5 were found to be barely affected on RGD conjugation but dramatically changed in the presence of proteins. By time domain fluorescence imaging, we demonstrated specific binding of RGD-Cy5.5 to glioblastoma xenografts in nude mice. Discrimination of unspecific fluorescence by lifetime-gated analysis further enhanced the detection sensitivity of RGD-Cy5.5-derived signals. We characterized RGD-Cy5.5 as a strongly emissive and stable probe adequate for selective targeting of αvβ3 integrins. The specificity and thus the overall detection sensitivity in vivo were optimized with lifetime gating, based on the previous determination of the probes fluorescence lifetime under application-relevant conditions.


Lab on a Chip ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 1802-1802
Author(s):  
Simon Berger ◽  
Evelyn Lattmann ◽  
Tinri Aegerter-Wilmsen ◽  
Michael Hengartner ◽  
Alex Hajnal ◽  
...  

Correction for ‘Long-term C. elegans immobilization enables high resolution developmental studies in vivo’ by Simon Berger et al., Lab Chip, 2018, 18, 1359–1368.


2015 ◽  
Vol 35 (7) ◽  
pp. 1199-1205 ◽  
Author(s):  
Kati Alakurtti ◽  
Jarkko J Johansson ◽  
Juho Joutsa ◽  
Matti Laine ◽  
Lars Bäckman ◽  
...  

We measured the long-term test–retest reliability of [11C]raclopride binding in striatal subregions, the thalamus and the cortex using the bolus-plus-infusion method and a high-resolution positron emission scanner. Seven healthy male volunteers underwent two positron emission tomography (PET) [11C]raclopride assessments, with a 5-week retest interval. D2/3 receptor availability was quantified as binding potential using the simplified reference tissue model. Absolute variability (VAR) and intraclass correlation coefficient (ICC) values indicated very good reproducibility for the striatum and were 4.5%/0.82, 3.9%/0.83, and 3.9%/0.82, for the caudate nucleus, putamen, and ventral striatum, respectively. Thalamic reliability was also very good, with VAR of 3.7% and ICC of 0.92. Test-retest data for cortical areas showed good to moderate reproducibility (6.1% to 13.1%). Our results are in line with previous test–retest studies of [11C]raclopride binding in the striatum. A novel finding is the relatively low variability of [11C]raclopride binding, providing suggestive evidence that extrastriatal D2/3 binding can be studied in vivo with [11C]raclopride PET to be verified in future studies.


Lab on a Chip ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 1359-1368 ◽  
Author(s):  
Simon Berger ◽  
Evelyn Lattmann ◽  
Tinri Aegerter-Wilmsen ◽  
Michael Hengartner ◽  
Alex Hajnal ◽  
...  

Microfluidics enables the interference free observation of sensitive developmental processes in C. elegans.


2010 ◽  
Vol 399 (7) ◽  
pp. 2331-2342 ◽  
Author(s):  
Anthony J. Tavares ◽  
Lori Chong ◽  
Eleonora Petryayeva ◽  
W. Russ Algar ◽  
Ulrich J. Krull

MedChemComm ◽  
2015 ◽  
Vol 6 (3) ◽  
pp. 391-402 ◽  
Author(s):  
Masahiro Ono ◽  
Hideo Saji

We review recent advances in our development of molecular imaging probes for PET, SPECT, and optical imaging for in vivo detection of β-amyloid plaques in the brain.


Sign in / Sign up

Export Citation Format

Share Document