scholarly journals Microbiota supplementation with Bifidobacterium and Lactobacillus modifies the preterm infant gut microbiota and metabolome

2019 ◽  
Author(s):  
Cristina Alcon-Giner ◽  
Matthew J. Dalby ◽  
Shabhonam Caim ◽  
Jennifer Ketskemety ◽  
Alex Shaw ◽  
...  

AbstractSupplementation with members of the early-life microbiota or ‘probiotics’ is becoming increasingly popular to attempt to beneficially manipulate the preterm gut microbiota. We performed a large longitudinal study comprising two preterm groups; 101 orally supplemented with Bifidobacterium and Lactobacillus (Bif/Lacto) and 133 non-supplemented (Control) matched by age, sex, birth-mode, and diet. 16S rRNA metataxonomic profiling on stool samples (n = 592) indicated a predominance of Bifidobacterium, and a reduction of pathobionts in the Bif/Lacto group. Metabolic phenotyping found a parallel increase in fecal acetate and lactate in the Bif/Lacto group compared to the Control group, which positively correlated with Bifidobacterium abundance consistent with the ability of the supplemented Bifidobacterium strain to metabolize human milk oligosaccharides and reduced gut pH. This study demonstrates that microbiota supplementation can modify the preterm microbiome and the gastrointestinal environment to more closely resemble that of a full-term infant.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Martin Iain Bahl ◽  
Anabelle Legarth Honoré ◽  
Sanne Tygesen Skønager ◽  
Oliver Legarth Honoré ◽  
Tove Clausen ◽  
...  

AbstractOn many mink farms, antibiotics are used extensively during the lactation period to reduce the prevalence and severity of pre-weaning diarrhoea (PWD) in mink kits (also referred to as greasy kit syndrome). Concerns have been raised, that routine treatment of PWD with antibiotics could affect the natural successional development of the gut microbiota, which may have long lasting consequences. Here we investigated the effects of early life antibiotic treatment administered for 1 week (postnatal days 13–20). Two routes of antibiotic administration were compared to a non-treated control group (CTR, n = 24). Routes of administration included indirect treatment, through the milk from dams receiving antibiotics by intramuscular administration (ABX_D, n = 24) and direct treatment by intramuscular administration to the kits (ABX_K, n = 24). A tendency for slightly increased weight at termination (Day 205) was observed in the ABX_K group. The gut microbiota composition was profiled by 16S rRNA gene sequencing at eight time points between Day 7 and Day 205. A clear successional development of the gut microbiota composition was observed and both treatment regimens caused detectable changes in the gut microbiota until at least eight days after treatment ceased. At termination, a significant positive correlation was identified between microbial diversity and animal weight.


2021 ◽  
Vol 15 (Supplement_1) ◽  
pp. S160-S161
Author(s):  
D Khusnutdinova ◽  
M Markelova ◽  
M Siniagina ◽  
E Boulygina ◽  
S Abdulkhakov ◽  
...  

Abstract Background Changes in the composition of gut microbiota, and their metabolic pathways, are important factors in the pathogenesis of inflammatory bowel disease (IBD). Many clinical trials have shown that taking probiotics based on Lactobacillus has a positive effect on patients with IBD. However, Lactobacillus should be used more carefully during the active phase of IBD, since some strains can negatively affect the pathogenesis of the disease1,2. The aim of this study was to assess the diversity of Lactobacillus species in the gut microbiome of IBD patients and healthy volunteers. Methods In the study, 62 stool samples from healthy people, 31 from patients with Crohn’s disease (CD), and 34 - ulcerative colitis (UC) in active phase were analyzed. DNA was isolated using the QIAamp Fast DNA Stool Mini Kit (Qiagen, USA) following with shotgun metagenomic sequencing the NextSeq 500 (project #0671-2020-0058). Bioinformatic analysis was performed with the MetaPhlAn2 package. Results An increased relative abundance of Lactobacillus was found in patients with IBD (3.2% ± 6.6% in CD and 1.6% ± 2.8 in UC) compared to healthy individuals (0.3% ± 1.2%, p<0.05). In the control group, Lactobacillus were absent in 41% of samples and 1–5 species were found in 58% of samples. Most CD and UC patients are characterized by the presence of 3 to 5 species of Lactobacillus (38% and 31%, respectively). For 23% of CD patients and 26% of UC patients, 6 to 9 types of Lactobacillus were found. Some patients with IBD have more than 10 different types of Lactobacillus in the gut microbiota (Fig.1). The intestinal microbiota in IBD patients is characterized by an increased abundance of several species: L. salivarius, L. gasseri, L. mucosae, as well as L. casei paracasei in patients with CD and L. vaginalis in patients with UC (Fig.2). Conclusion The composition of the intestinal microbiota of IBD patients differs significantly in terms of Lactobacillus proportion and species diversity. Overabundance of five Lactobacillus species could be associated with the active phase of IBD. References


2021 ◽  
Vol 9 (6) ◽  
pp. 1292
Author(s):  
Mahejibin Khan ◽  
Bijina J. Mathew ◽  
Priyal Gupta ◽  
Garima Garg ◽  
Sagar Khadanga ◽  
...  

Background: The disease severity, ranging from being asymptomatic to having acute illness, and associated inflammatory responses has suggested that alterations in the gut microbiota may play a crucial role in the development of chronic disorders due to COVID-19 infection. This study describes gut microbiota dysbiosis in COVID-19 patients and its implications relating to the disease. Design: A cross sectional prospective study was performed on thirty RT-PCR-confirmed COVID-19 patients admitted to the All India Institute of Medical Sciences, Bhopal, India, between September 10 and 20, 2020. Ten healthy volunteers were recruited as the control group. IFN, TNF, and IL-21 profiling was conducted using plasma samples, and gut bacterial analysis was performed after obtaining the metagenomics data of stool samples. Results: Patients with a variable COVID-19 severity showed distinct gut microflora and peripheral interleukin-21 levels. A low Firmicute/Bacteroidetes ratio, caused by the depletion of the fibre-utilizing bacteria, F. prausnitzii, B. Plebius, and Prevotella, and an increase in Bacteroidetes has associated gut microbiota dysbiosis with COVID-19 disease severity. Conclusions: The loss of the functional attributes of signature commensals in the gut, due to dysbiosis, is a predisposing factor of COVID-19 pathophysiology.


2019 ◽  
Vol 9 (24) ◽  
pp. 5491 ◽  
Author(s):  
Lorenzo Polimeno ◽  
Michele Barone ◽  
Adriana Mosca ◽  
Maria Teresa Viggiani ◽  
Alfredo Di Leo ◽  
...  

(1) Background: Colorectal cancer (CRC) development is sustained by multiple factors including the gut microbiota, as suggested by a growing body of evidence. Most CRCs have a sporadic (non-hereditary) onset and develop from sporadic colorectal adenomas/polyp (SCA/P). In the present study, we investigated the characteristic of anaerobic microorganisms in stool samples obtained from 20 patients with SCA/P and 20 subjects without evidence of proliferative lesions at colonoscopy (Controls). (2) Material and Methods: We designed this clinical trial using adaptive randomization by minimization. Selective culture media and Matrix Assisted Laser Desorption Ionization Time of Flight (MALDI-TOF) mass spectrometry techniques were used to identify the components of microbiota. The data obtained revealed a different variability of gut microbiota in stool samples of controls and SCA/P subjects. (3) Results: The most interesting difference was observed for Bacteroides species, which represent the 50% of all bacterial species identified in the stool samples: two species, Bacteroides stercoris and Parabacteroides distasonis, were found only in the feces from control group, whereas Bacteroides fragilis and Prevotella melaningenica species were presents only in SCA/P patients. Among Gram+ bacteria also, specific species were found in the two groups of feces: Clostridium clostridioforme, Propionibacterium avidum and Pediococcus pentasaceus were identified only in controls, while Eubacterium limosum, Clostridium innocuum and Corybebacterium xerosus were identified in SCA/P stool samples only. (4) Conclusions: Our findings suggest that, compared to control stool samples, a different intestinal microbiota is present in SCA/P stool samples, that may create a micro-environment predisposing for the development of proliferative phenomena. As a consequence, gut microbiota manipulation could be a future target for personalized treatments.


2018 ◽  
Author(s):  
Loo Wee Chia ◽  
Marko Mank ◽  
Bernadet Blijenberg ◽  
Roger S. Bongers ◽  
Steven Aalvink ◽  
...  

AbstractThe establishment of the gut microbiota immediately after birth is a dynamic process that may impact lifelong health. At this important developmental stage in early life, human milk oligosaccharides (HMOS) serve as specific substrates to promote the growth of gut microbes, particularly the group of Actinobacteria (bifidobacteria). Later in life, this shifts to the colonisation of Firmicutes and Bacteroidetes, which generally dominate the human gut throughout adulthood. The well-orchestrated transition is important for health, as an aberrant microbial composition and/or SCFA production are associated with colicky symptoms and atopic diseases in infants. Here, we study the trophic interactions between an HMOS-degrader, Bifidobacterium longum subsp. infantis and the butyrogenic Anaerostipes caccae using carbohydrate substrates that are relevant in this early life period, i.e. lactose and HMOS. Mono-and co-cultures of these bacterial species were grown at pH 6.5 in anaerobic bioreactors supplemented with lactose or total human milk carbohydrates (containing both lactose and HMOS). A cac was not able to grow on these substrates except when grown in co-culture with B. inf, leading concomitant butyrate production. Cross-feeding was observed, in which A. cac utilised the liberated monosaccharides as well as lactate and acetate produced by B. inf. This microbial cross-feeding is indicative of the key ecological role of bifidobacteria in providing substrates for other important species to colonise the infant gut. The symbiotic relationship between these key species contributes to the gradual production of butyrate early in life that could be important for host-microbial cross-talk and gut maturation.ImportanceThe establishment of a healthy infant gut microbiota is crucial for the immune, metabolic and neurological development of infants. Recent evidence suggests that an aberrant gut microbiota early in life could lead to discomfort and predispose infants to the development of immune related diseases. This paper addresses the ecosystem function of two resident microbes of the infant gut. The significance of this research is the proof of cross-feeding interactions between HMOS-degrading bifidobacteria and a butyrate-producing microorganism. Bifidobacteria in the infant gut that support the growth and butyrogenesis of butyrate-producing bacteria, could orchestrated an important event of maturation for both the gut ecosystem and physiology of infant.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Yu-Chi Chiu ◽  
Shih-Wei Lee ◽  
Chi-Wei Liu ◽  
Tzuo-Yun Lan ◽  
Lawrence Shih-Hsin Wu

Abstract Objective Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory lung disease characterized by a persistent limitation in airflow. Gut microbiota is closely correlated with lung inflammation. However, gut microbiota has not been studied in patients with declining lung function, due to chronic lung disease progression. Subjects and methods Stool samples were obtained from 55 patients with COPD that were in stable condition at enrolment (stage 1) and at a 1-year follow-up (stage 2). After extracting stool DNA, we performed next generation sequencing to analyse the distribution of gut microbiota. Results Patients were divided to control and declining lung function groups, based on whether the rate of forced expiratory volume in 1 s (FEV1) had declined over time. An alpha diversity analysis of initial and follow-up stool samples showed a significant difference in the community richness of microbiota in the declining function group, but not in the control group. At the phylum level, Bacteroidetes was more abundant in the control group and Firmicutes was more abundant in the declining function group. The Alloprevotella genus was more abundant in the control group than in the declining function group. At 1-year follow-up, the mean proportions of Acinetobacter and Stenotrophomonas significantly increased in the control and declining function groups, respectively. Conclusion Some community shifts in gut microbiota were associated with lung function decline in COPD patients under regular treatment. Future studies should investigate the mechanism underlying alterations in lung function, due to changes in gut bacterial communities, in COPD.


Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2040
Author(s):  
Miguel Toribio-Mateas ◽  
Adri Bester ◽  
Natalia Klimenko

Eating less meat is increasingly seen as a healthier, more ethical option. This is leading to growing numbers of flexitarian consumers looking for plant-based meat alternatives (PBMAs) to replace at least some of the animal meat they consume. Popular PBMA products amongst flexitarians, including plant-based mince, burgers, sausages and meatballs, are often perceived as low-quality, ultra-processed foods. However, we argue that the mere industrial processing of ingredients of plant origin does not make a PBMA product ultra-processed by default. To test our hypothesis, we conducted a randomised controlled trial to assess the changes to the gut microbiota of a group of 20 participants who replaced several meat-containing meals per week with meals cooked with PBMA products and compared these changes to those experienced by a size-matched control. Stool samples were subjected to 16S rRNA sequencing. The resulting raw data was analysed in a compositionality-aware manner, using a range of innovative bioinformatic methods. Noteworthy changes included an increase in butyrate metabolising potential—chiefly in the 4-aminobutyrate/succinate and glutarate pathways—and in the joint abundance of butyrate-producing taxa in the intervention group compared to control. We also observed a decrease in the Tenericutes phylum in the intervention group and an increase in the control group. Based on our findings, we concluded that the occasional replacement of animal meat with PBMA products seen in flexitarian dietary patterns can promote positive changes in the gut microbiome of consumers.


Author(s):  
Martin F. Laursen ◽  
Mikiyasu Sakanaka ◽  
Nicole von Burg ◽  
Urs Mörbe ◽  
Daniel Andersen ◽  
...  

ABSTRACTBreastfeeding profoundly shapes the infant gut microbiota, which is critical for early life immune development. However, few breastmilk-dependent microbial metabolites mediating host-microbiota interactions are currently known. We here demonstrate that breastmilk-promoted Bifidobacterium species convert aromatic amino acids (tryptophan, phenylalanine and tyrosine) into their respective aromatic lactic acids (indolelactate, phenyllactate and 4-hydroxyphenyllactate) via a previously unrecognised aromatic lactate dehydrogenase. By longitudinal profiling of the gut microbiota composition and metabolome of stool samples of infants obtained from birth until 6 months of age, we show that stool concentrations of aromatic lactic acids are determined by the abundance of human milk oligosaccharide degrading Bifidobacterium species containing the aromatic lactate dehydrogenase. We demonstrate that stool concentrations of Bifidobacterium-derived indolelactate, the most abundant aromatic lactic acid in vivo, are associated with the capacity of infant stool samples to activate the aryl hydrocarbon receptor (AhR), a receptor important for controlling intestinal homeostasis and immune responses. Finally, we show that indolelactate modulates ex vivo immune responses of human CD4+ T-cells and monocytes in a dose-dependent manner by acting as an agonist of both, the AhR and hydroxycarboxylic acid receptor 3 (HCAR3). Our findings reveal that breastmilk-promoted Bifidobacterium produce aromatic lactic acids in the gut of infants and suggest that these microbial metabolites may impact immune function in early life.


2020 ◽  
pp. 1-16
Author(s):  
L.W. Chia ◽  
M. Mank ◽  
B. Blijenberg ◽  
R.S. Bongers ◽  
K. van Limpt ◽  
...  

The establishment of the gut microbiota immediately after birth is a dynamic process that may impact lifelong health. At this important developmental stage in early life, human milk oligosaccharides (HMOs) serve as specific substrates to shape the gut microbiota of the nursling. The well-orchestrated transition is important as an aberrant microbial composition and bacterial-derived metabolites are associated with colicky symptoms and atopic diseases in infants. Here, we study the trophic interactions between an HMO-degrader, Bifidobacterium infantis and the butyrogenic Anaerostipes caccae using carbohydrate substrates that are relevant in the early life period including lactose and total human milk carbohydrates. Mono- and co-cultures of these bacterial species were grown at pH 6.5 in anaerobic bioreactors supplemented with lactose or total human milk carbohydrates. A. caccae was not able to grow on these substrates except when grown in co-culture with B. infantis, leading to growth and concomitant butyrate production. Two levels of cross-feeding were observed, in which A. caccae utilised the liberated monosaccharides as well as lactate and acetate produced by B. infantis. This microbial cross-feeding points towards the key ecological role of bifidobacteria in providing substrates for other important species that will colonise the infant gut. The progressive shift of the gut microbiota composition that contributes to the gradual production of butyrate could be important for host-microbial crosstalk and gut maturation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhaoyang Yin ◽  
Qiangde Liu ◽  
Yongtao Liu ◽  
Shengnan Gao ◽  
Yuliang He ◽  
...  

Marine fish larvae are vulnerable during the early life period. The early intervention using probiotics may be a promising method to improve growth of fish larvae. In this study, a 30-day feeding trial was conducted to evaluate the effects of early life intervention using probiotic Clostridium butyricum (CB) on growth performance, intestinal development, immune response and gut microbiota of large yellow croaker (Larimichthys crocea) larvae. Four isonitrogenous and isolipidic diets were formulated with the supplementation of four different levels of CB (5 × 109 CFU g−1), 0.00% (Control), 0.10% (CB1), 0.20% (CB2), and 0.40% (CB3). Results showed that larvae fed diets with CB had significant higher final length than the control group. Meanwhile, larvae fed the diet with 0.10% CB had significant higher final weight and specific growth rate (SGR) than the control group. However, no significant difference in survival rate was observed among dietary treatments. CB supplementation significantly increased the height of intestinal villus and the length of intestinal enterocyte. Similarly, CB supplementation significantly increased the expression of tight zonula occludens-2 (zo-2) and ornithine decarboxylase (odc) than the control group. Larvae fed the diet with 0.20% CB had significant higher lipase and leucine-aminopeptidase (LAP) activity than the control group. Moreover, CB supplementation significantly improved immune enzyme activities than the control group. Sequencing of bacterial 16S rRNA V4-5 region indicated that dietary CB altered intestinal microbiota profile and decreased intestinal microbial diversities of larvae. CB supplementation could effectively increase the abundance of CB, and decrease the abundance of some potential pathogenic bacteria in larval gut. These results revealed that early life intervention using 0.10–0.20% CB could promote growth of large yellow croaker larvae probably through promoting intestinal development, improving immune enzyme activities and modulating gut microbiota.


Sign in / Sign up

Export Citation Format

Share Document