scholarly journals Gut Microbiota Imbalance is Related to Sporadic Colorectal Neoplasms. A Pilot Study

2019 ◽  
Vol 9 (24) ◽  
pp. 5491 ◽  
Author(s):  
Lorenzo Polimeno ◽  
Michele Barone ◽  
Adriana Mosca ◽  
Maria Teresa Viggiani ◽  
Alfredo Di Leo ◽  
...  

(1) Background: Colorectal cancer (CRC) development is sustained by multiple factors including the gut microbiota, as suggested by a growing body of evidence. Most CRCs have a sporadic (non-hereditary) onset and develop from sporadic colorectal adenomas/polyp (SCA/P). In the present study, we investigated the characteristic of anaerobic microorganisms in stool samples obtained from 20 patients with SCA/P and 20 subjects without evidence of proliferative lesions at colonoscopy (Controls). (2) Material and Methods: We designed this clinical trial using adaptive randomization by minimization. Selective culture media and Matrix Assisted Laser Desorption Ionization Time of Flight (MALDI-TOF) mass spectrometry techniques were used to identify the components of microbiota. The data obtained revealed a different variability of gut microbiota in stool samples of controls and SCA/P subjects. (3) Results: The most interesting difference was observed for Bacteroides species, which represent the 50% of all bacterial species identified in the stool samples: two species, Bacteroides stercoris and Parabacteroides distasonis, were found only in the feces from control group, whereas Bacteroides fragilis and Prevotella melaningenica species were presents only in SCA/P patients. Among Gram+ bacteria also, specific species were found in the two groups of feces: Clostridium clostridioforme, Propionibacterium avidum and Pediococcus pentasaceus were identified only in controls, while Eubacterium limosum, Clostridium innocuum and Corybebacterium xerosus were identified in SCA/P stool samples only. (4) Conclusions: Our findings suggest that, compared to control stool samples, a different intestinal microbiota is present in SCA/P stool samples, that may create a micro-environment predisposing for the development of proliferative phenomena. As a consequence, gut microbiota manipulation could be a future target for personalized treatments.

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3907
Author(s):  
Sergio Pérez-Burillo ◽  
Beatriz Navajas-Porras ◽  
Alicia López-Maldonado ◽  
Daniel Hinojosa-Nogueira ◽  
Silvia Pastoriza ◽  
...  

Green tea can influence the gut microbiota by either stimulating the growth of specific species or by hindering the development of detrimental ones. At the same time, gut bacteria can metabolize green tea compounds and produce smaller bioactive molecules. Accordingly, green tea benefits could be due to beneficial bacteria or to microbial bioactive metabolites. Therefore, the gut microbiota is likely to act as middle man for, at least, some of the green tea benefits on health. Many health promoting effects of green tea seems to be related to the inter-relation between green tea and gut microbiota. Green tea has proven to be able to correct the microbial dysbiosis that appears during several conditions such as obesity or cancer. On the other hand, tea compounds influence the growth of bacterial species involved in inflammatory processes such as the release of LPS or the modulation of IL production; thus, influencing the development of different chronic diseases. There are many studies trying to link either green tea or green tea phenolic compounds to health benefits via gut microbiota. In this review, we tried to summarize the most recent research in the area.


2021 ◽  
Vol 22 (4) ◽  
pp. 2131
Author(s):  
Stefania Pane ◽  
Anna Sacco ◽  
Andrea Iorio ◽  
Lorenza Romani ◽  
Lorenza Putignani

Background: Strongyloidiasis is a neglected tropical disease caused by the intestinal nematode Strongyloides stercoralis and characterized by gastrointestinal and pulmonary involvement. We report a pediatric case of strongyloidiasis to underline the response of the host microbiota to the perturbation induced by the nematode. Methods: We performed a 16S rRNA-metagenomic analysis of the gut microbiota of a 7-year-old female during and after S. stercolaris infection, investigating three time-point of stool samples’ ecology: T0- during parasite infection, T1- a month after parasite infection, and T2- two months after parasite infection. Targeted-metagenomics were used to investigate ecology and to predict the functional pathways of the gut microbiota. Results: an increase in the alpha-diversity indices in T0-T1 samples was observed compared to T2 and healthy controls (CTRLs). Beta-diversity analysis showed a shift in the relative abundance of specific gut bacterial species from T0 to T2 samples. Moreover, the functional prediction of the targeted-metagenomics profiles suggested an enrichment of microbial glycan and carbohydrate metabolisms in the T0 sample compared with CTRLs. Conclusions: The herein report reinforces the literature suggestion of a putative direct or immune-mediated ability of S. stercolaris to promote the increase in bacterial diversity.


2021 ◽  
Author(s):  
Rafig GURBANOV ◽  
Uygar KABAOĞLU ◽  
Tuba YAĞCI

Abstract Mammals have a symbiotic relationship with various microorganisms called microbiota throughout their lives. These microorganisms are known to affect the host's physiology, health, and even mental balance. In the harbor of the densest and most diverse microorganisms in mammals, the curved structure of the intestines and their rich nutrient content are effective. The development of the gut microbiota is regulated by a complex interaction between host and environmental factors, including diet and lifestyle. Herein, it is aimed to elucidate the changes in the gut microbiota of rats living in urban and rural habitats. All taxonomic changes in the gut microbiota of wild rats belonging to Rattus rattus species caught from urban and rural areas of Western Anatolian (Bilecik province) were examined comparatively by 16S rRNA next-generation sequencing technique. Laboratory rats were used as a control group for comparison. Thus, 2000 different bacterial species were identified in gut microbiota. According to the Shannon and Simpsons values ​​calculated, laboratory rats showed the highest species diversity. When the similarities of microbiota profiles were compared with the principal coordinate analysis (PcoA), bacterial populations showed variability among different habitats. The comparison of species richness between the groups with the species rarefaction technique revealed higher species richness in all wild rats, especially in the rural habitat, compared to laboratory rats. Food sources were determined as the most important factor contributing to species richness and diversity. While the increased food variety boosted species richness, species diversity was increased due to the diminished food variety.


Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 748 ◽  
Author(s):  
Jin-Young Lee ◽  
Mohamed Mannaa ◽  
Yunkyung Kim ◽  
Jehun Kim ◽  
Geun-Tae Kim ◽  
...  

The aim of this study was to investigate differences between the gut microbiota composition in patients with rheumatoid arthritis (RA) and those with osteoarthritis (OA). Stool samples from nine RA patients and nine OA patients were collected, and DNA was extracted. The gut microbiome was assessed using 16S rRNA gene amplicon sequencing. The structures and differences in the gut microbiome between RA and OA were analyzed. The analysis of diversity revealed no differences in the complexity of samples. The RA group had a lower Bacteroidetes: Firmicutes ratio than did the OA group. Lactobacilli and Prevotella, particularly Prevotella copri, were more abundant in the RA than in the OA group, although these differences were not statistically significant. The relative abundance of Bacteroides and Bifidobacterium was lower in the RA group. At the species level, the abundance of certain bacterial species was significantly lower in the RA group, such as Fusicatenibacter saccharivorans, Dialister invisus, Clostridium leptum, Ruthenibacterium lactatiformans, Anaerotruncus colihominis, Bacteroides faecichinchillae, Harryflintia acetispora, Bacteroides acidifaciens, and Christensenella minuta. The microbial properties of the gut differed between RA and OA patients, and the RA dysbiosis revealed results similar to those of other autoimmune diseases, suggesting that a specific gut microbiota pattern is related to autoimmunity.


2021 ◽  
Vol 15 (Supplement_1) ◽  
pp. S160-S161
Author(s):  
D Khusnutdinova ◽  
M Markelova ◽  
M Siniagina ◽  
E Boulygina ◽  
S Abdulkhakov ◽  
...  

Abstract Background Changes in the composition of gut microbiota, and their metabolic pathways, are important factors in the pathogenesis of inflammatory bowel disease (IBD). Many clinical trials have shown that taking probiotics based on Lactobacillus has a positive effect on patients with IBD. However, Lactobacillus should be used more carefully during the active phase of IBD, since some strains can negatively affect the pathogenesis of the disease1,2. The aim of this study was to assess the diversity of Lactobacillus species in the gut microbiome of IBD patients and healthy volunteers. Methods In the study, 62 stool samples from healthy people, 31 from patients with Crohn’s disease (CD), and 34 - ulcerative colitis (UC) in active phase were analyzed. DNA was isolated using the QIAamp Fast DNA Stool Mini Kit (Qiagen, USA) following with shotgun metagenomic sequencing the NextSeq 500 (project #0671-2020-0058). Bioinformatic analysis was performed with the MetaPhlAn2 package. Results An increased relative abundance of Lactobacillus was found in patients with IBD (3.2% ± 6.6% in CD and 1.6% ± 2.8 in UC) compared to healthy individuals (0.3% ± 1.2%, p<0.05). In the control group, Lactobacillus were absent in 41% of samples and 1–5 species were found in 58% of samples. Most CD and UC patients are characterized by the presence of 3 to 5 species of Lactobacillus (38% and 31%, respectively). For 23% of CD patients and 26% of UC patients, 6 to 9 types of Lactobacillus were found. Some patients with IBD have more than 10 different types of Lactobacillus in the gut microbiota (Fig.1). The intestinal microbiota in IBD patients is characterized by an increased abundance of several species: L. salivarius, L. gasseri, L. mucosae, as well as L. casei paracasei in patients with CD and L. vaginalis in patients with UC (Fig.2). Conclusion The composition of the intestinal microbiota of IBD patients differs significantly in terms of Lactobacillus proportion and species diversity. Overabundance of five Lactobacillus species could be associated with the active phase of IBD. References


2020 ◽  
Author(s):  
Leila Ganji ◽  
Mohammad Hassan Shirazi ◽  
Masoud Alebouyeh ◽  
Parisa Eslami ◽  
Mohammad Rahbar ◽  
...  

Abstract Introduction: Cytolethal distending toxin (Cdt) is one of the bacterial toxins that present in a variety of Gram-negative human pathogens, such as E. coli, Salmonella spp., and Campylobacter spp. CDT composed of three subunits encoded by three adjacent genes, including cdtA, cdtB and cdtC. It is approved that cdtB had toxic activity and caused DNA damage of the host cell. Despite its presence in different bacterial species, role of Cdt in acute and chronic infections, such as gastroenteritis and irritable bowel syndrome (IBS) is unclear. To analyze this correlation, we studied the prevalence of cdtB among different enteropathogenic bacteria in patients with gastroenteritis and IBS compared with healthy people.Materials and Methods: In this cross-sectional descriptive study, 230 stool samples were collected from patients with gastroenteritis, IBS, and healthy people. The presence of Cdt-B encoding bacteria, including Escherichia coli, Campylobacter spp., Yersinia entercolitica, Providencia alkalifacience, and Salmonella enterica was examined by polymerase chain reaction using genus specific primers. Results: Out of 230 stool samples, Cdt-B encoding Campylobacter spp. were found in 34.6% (52/150), 6.25% (5/80), and 4% (2/50) of the patients with gastroenteritis, IBS, and the control group, respectively. Carriage of Cdt-B encoding Salmonella enterica was characterized among 5.3% (8/150) of the patients with gastroenteritis and 17.5% (14/80) of the IBS patients. Although none of the patients carried cdtB of E. coli and Providencia spp., cdtB of Y. enterocolitica was detected in 1 of the patients with gastroenteritis (0.6%). Statistical analysis showed significant correlation between infection with CdtB-encoding Campylobacter spp. and IBS-D subtype. No significant correlation was found between infection with Cdt-B encoding bacteria, and other clinical and demographic data.Conclusion: Our results confirmed relatively higher frequency of Cdt-B encoding bacteria in the intestine of IBS patients and those with gastroenteritis compared with healthy individuals. Regarding the frequency of Cdt-B encoding Salmonella and Campylobacter bacteria, it was proposed that infection with these enteropathogens could be considered as a risk factor for the development or progression of IBS among the Iranian patients. Further studies are needed to establish this involvemet.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6928 ◽  
Author(s):  
Lin Huang ◽  
Teng Wang ◽  
Qian Wu ◽  
Xin Dong ◽  
Feifei Shen ◽  
...  

Background and Aims Recent evidence suggest that microbiota is associated with almost all major types of diseases, including cardiovascular diseases. However, its role in Acute Cerebral Infarction remains unexplored. It is important to understand the diversity and distribution of gut microbiota (GM) in patients with Acute Cerebral Infarction and the role that GM plays in this type of disease. Methods We performed pyrosequencing on the gut microbiota of 40 individuals in order to elucidate whether the composition of the microbiota differs between patients with Acute Cerebral Infarction and healthy controls: Of these individuals, there were 31 with Acute Cerebral Infarction and nine controls. We applied linear regression to calculate the correlation between the gut flora and disease risk factors. Finally, KEGG functional enrichment analysis was conducted to examine the correlation between the gut flora and Acute Cerebral Infarction. Results The overall microbial structure was similar in both the controls and the patients, but the control group had higher relative presence of Blautia obeum while the presence of Streptococcus infantis and Prevotella copri were relatively higher in the patient group. Using linear regression, we found that Blautia obeum was negatively associated with white blood cell count and Streptococcus infantis was positively correlated with creatinine and lipoprotein. The KEGG pathway analysis indicated that the bio-pathways including methane metabolism, lipopolysaccharide synthesis, bacterial secretion, and flagellar assembly of the gut microbiota in the patient group was expressed differently than that of the controls. We identified three differentially expressed gut microbial functions in Acute Cerebral Infarction and found four bacterial pathways that might be related to the development of this disease. Conclusions Our study identified three abnormally-expressed bacteria—Blautia obeum, Streptococcus infantis, and Prevotella copri—in patients with Acute Cerebral Infarction compared with healthy controls. It reveals a correlation of these bacterial species with Acute Cerebral Infarction as they relate to disease factors and functional pathways. These findings may shed light on the treatment of cerebral infarction because gut microbiota could serve as a potential therapeutic approach for the treatment of cardiovascular and metabolic diseases.


2021 ◽  
Vol 9 (6) ◽  
pp. 1292
Author(s):  
Mahejibin Khan ◽  
Bijina J. Mathew ◽  
Priyal Gupta ◽  
Garima Garg ◽  
Sagar Khadanga ◽  
...  

Background: The disease severity, ranging from being asymptomatic to having acute illness, and associated inflammatory responses has suggested that alterations in the gut microbiota may play a crucial role in the development of chronic disorders due to COVID-19 infection. This study describes gut microbiota dysbiosis in COVID-19 patients and its implications relating to the disease. Design: A cross sectional prospective study was performed on thirty RT-PCR-confirmed COVID-19 patients admitted to the All India Institute of Medical Sciences, Bhopal, India, between September 10 and 20, 2020. Ten healthy volunteers were recruited as the control group. IFN, TNF, and IL-21 profiling was conducted using plasma samples, and gut bacterial analysis was performed after obtaining the metagenomics data of stool samples. Results: Patients with a variable COVID-19 severity showed distinct gut microflora and peripheral interleukin-21 levels. A low Firmicute/Bacteroidetes ratio, caused by the depletion of the fibre-utilizing bacteria, F. prausnitzii, B. Plebius, and Prevotella, and an increase in Bacteroidetes has associated gut microbiota dysbiosis with COVID-19 disease severity. Conclusions: The loss of the functional attributes of signature commensals in the gut, due to dysbiosis, is a predisposing factor of COVID-19 pathophysiology.


2021 ◽  
Author(s):  
Rafig Gurbanov ◽  
Uygar Kabaoğlu ◽  
Tuba Yağci

Abstract Mammals have a symbiotic relationship with various microorganisms called microbiota throughout their lives. These microorganisms are known to affect the host's physiology, health, and even mental balance. The development of the gut microbiota is regulated by a complex interaction between host and environmental factors, including diet and lifestyle. Herein, it is aimed to elucidate the changes in the gut microbiota of rats living in urban and rural habitats. All taxonomic changes in the gut microbiota of wild rats belonging to Rattus rattus species caught from urban and rural areas of Western Anatolian (Bilecik province) were examined comparatively by 16S rRNA next-generation sequencing technique. Laboratory rats were used as a control group for comparison. Thus, 2000 different bacterial species were identified in gut microbiota. According to the Shannon and Simpsons values ​​calculated, laboratory rats showed the highest species diversity. When the similarities of microbiota profiles were compared with the principal coordinate analysis (PcoA), bacterial populations showed variability among different habitats. The comparison of species richness between the groups with the species rarefaction technique revealed higher species richness in all wild rats, especially in the rural habitat, compared to laboratory rats.


2019 ◽  
Vol 7 (11) ◽  
pp. 496 ◽  
Author(s):  
Magdalena Crhanova ◽  
Daniela Karasova ◽  
Helena Juricova ◽  
Jitka Matiasovicova ◽  
Eva Jahodarova ◽  
...  

Epidemiological data show that the composition of gut microbiota influences host health, disease status, and even behaviour. However, to confirm these epidemiological observations in controlled experiments, pure cultures of gut anaerobes must be obtained. Since the culture of gut anaerobes is not a simple task due to the large number of bacterial species colonising the intestinal tract, in this study we inoculated 174 different culture media with caecal content from adult hens, and compared the microbiota composition in the original caecal samples and in bacterial masses growing in vitro by 16S rRNA sequencing. In total, 42% of gut microbiota members could be grown in vitro and since there were some species which were not cultured but for which the culture conditions are known, it is likely that more than half of chicken gut microbiota can be grown in vitro. However, there were two lineages of Clostridiales and a single lineage of Bacteroidetes which were common in chicken caecal microbiota but resistant to culture. Of the most selective culture conditions, nutrient broths supplemented with mono- or di-saccharides, including those present in fruits, positively selected for Lactobacillaceae. The addition of bile salts selected for Veillonellaceae and YCFA (yeast casitone fatty acid agar) enriched for Desulfovibrionaceae. In addition, Erysipelotrichaceae were positively selected by colistin, trimethoprim, streptomycin and nalidixic acid. Culture conditions tested in this study can be used for the selective enrichment of desired bacterial species but also point towards the specific functions of individual gut microbiota members.


Sign in / Sign up

Export Citation Format

Share Document