scholarly journals Alternative polyadenylation drives oncogenic gene expression in pancreatic ductal adenocarcinoma

2019 ◽  
Author(s):  
Swati Venkat ◽  
Arwen A. Tisdale ◽  
Johann R. Schwarz ◽  
Abdulrahman A. Alahmari ◽  
H. Carlo Maurer ◽  
...  

ABSTRACTAlternative polyadenylation (APA) is a gene regulatory process that dictates mRNA 3’-UTR length, resulting in changes in mRNA stability and localization. APA is frequently disrupted in cancer and promotes tumorigenesis through altered expression of oncogenes and tumor suppressors. Pan-cancer analyses have revealed common APA events across the tumor landscape; however, little is known about tumor type-specific alterations that may uncover novel events and vulnerabilities. Here we integrate RNA-sequencing data from the Genotype-Tissue Expression (GTEx) project and The Cancer Genome Atlas (TCGA) to comprehensively analyze APA events in 148 pancreatic ductal adenocarcinomas (PDAs). We report widespread, recurrent and functionally relevant 3’-UTR alterations associated with gene expression changes of known and newly identified PDA growth-promoting genes and experimentally validate the effects of these APA events on expression. We find enrichment for APA events in genes associated with known PDA pathways, loss of tumor-suppressive miRNA binding sites, and increased heterogeneity in 3’-UTR forms of metabolic genes. Survival analyses reveal a subset of 3’-UTR alterations that independently characterize a poor prognostic cohort among PDA patients. Finally, we identify and validate the casein kinase CK1α as an APA-regulated therapeutic target in PDA. Knockdown or pharmacological inhibition of CK1α attenuates PDA cell proliferation and clonogenic growth. Our single-cancer analysis reveals APA as an underappreciated driver of pro-tumorigenic gene expression in PDA via the loss of miRNA regulation.

Author(s):  
Melissa Davis ◽  
Rachel Martini ◽  
Lisa Newman ◽  
Olivier Elemento ◽  
Jason White ◽  
...  

Triple negative breast cancers (TNBCs) are molecularly heterogeneous, and the link between their aggressiveness with African ancestry is not established. We investigated primary TNBCs for gene expression among self-reported race (SRR) groups of African American (AA, n=42) and European American (EA, n=33) women. Using The Cancer Genome Atlas (TCGA) approaches, we analyzed RNA sequencing data to measure changes in genome-wide expression and used logistic regressions to identify ancestry-associated gene expression signatures. To determine global ancestry, GATK best practices were followed for variant calling, and used the 1000 Genomes Project as reference data. We identified >150 African ancestry-associated genes and found that, compared to SRR, quantitative genetic analysis was a more robust method to identify racial/ethnic-specific genes that were differentially expressed. A subset of African ancestry-specific genes that were upregulated in TNBCs of our AA patients were validated in TCGA data. In AA patients, there was a higher incidence of basal-like 2 tumors and altered TP53, NFB1, and AKT pathways. The distinct distribution of TNBC subtypes and altered oncologic pathways show that the ethnic variations in TNBCs are driven by shared genetic ancestry. Thus, to appreciate the molecular diversity of TNBCs, tumors from patients of various ancestral origins should be evaluated.


Open Medicine ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 459-463
Author(s):  
Arash Hooshmand

Abstract A new logistic regression-based method to distinguish between cancerous and noncancerous RNA genomic data is developed and tested with 100% precision on 595 healthy and cancerous prostate samples. A logistic regression system is developed and trained using whole-exome sequencing data at a high-level, i.e., normalized quantification of RNAs obtained from 495 prostate cancer samples from The Cancer Genome Atlas and 100 healthy samples from the Genotype-Tissue Expression project. We could show that both sensitivity and specificity of the method in the classification of cancerous and noncancerous cells are perfectly 100%.


2021 ◽  
Vol 22 (5) ◽  
pp. 2622
Author(s):  
Áron Bartha ◽  
Balázs Győrffy

Genes showing higher expression in either tumor or metastatic tissues can help in better understanding tumor formation and can serve as biomarkers of progression or as potential therapy targets. Our goal was to establish an integrated database using available transcriptome-level datasets and to create a web platform which enables the mining of this database by comparing normal, tumor and metastatic data across all genes in real time. We utilized data generated by either gene arrays from the Gene Expression Omnibus of the National Center for Biotechnology Information (NCBI-GEO) or RNA-seq from The Cancer Genome Atlas (TCGA), Therapeutically Applicable Research to Generate Effective Treatments (TARGET), and The Genotype-Tissue Expression (GTEx) repositories. The altered expression within different platforms was analyzed separately. Statistical significance was computed using Mann–Whitney or Kruskal–Wallis tests. False Discovery Rate (FDR) was computed using the Benjamini–Hochberg method. The entire database contains 56,938 samples, including 33,520 samples from 3180 gene chip-based studies (453 metastatic, 29,376 tumorous and 3691 normal samples), 11,010 samples from TCGA (394 metastatic, 9886 tumorous and 730 normal), 1193 samples from TARGET (1 metastatic, 1180 tumorous and 12 normal) and 11,215 normal samples from GTEx. The most consistently upregulated genes across multiple tumor types were TOP2A (FC = 7.8), SPP1 (FC = 7.0) and CENPA (FC = 6.03), and the most consistently downregulated gene was ADH1B (FC = 0.15). Validation of differential expression using equally sized training and test sets confirmed the reliability of the database in breast, colon, and lung cancer at an FDR below 10%. The online analysis platform enables unrestricted mining of the database and is accessible at TNMplot.com.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yuchu Zhang ◽  
Libing Shen ◽  
Qili Shi ◽  
Guofang Zhao ◽  
Fajiu Wang

BackgroundAlternative polyadenylation (APA) is a pervasive posttranscriptional mechanism regulating gene expression. However, the specific dysregulation of APA events and its potential biological or clinical significance in lung adenocarcinoma (LUAD) remain unclear.MethodsHere, we collected RNA-Seq data from two independent datasets: GSE40419 (n = 146) and The Cancer Genome Atlas (TCGA) LUAD (n = 542). The DaPars algorithm was employed to characterize the APA profiles in tumor and normal samples. Spearman correlation was used to assess the effects of APA regulators on 3′ UTR changes in tumors. The Cox proportional hazard model was used to identify clinically relevant APA events and regulators. We stratified 512 patients with LUAD in the TCGA cohort through consensus clustering based on the expression of APA factors.FindingsWe identified remarkably consistent alternative 3′ UTR isoforms between the two cohorts, most of which were shortened in LUAD. Our analyses further suggested that aberrant usage of proximal polyA sites resulted in escape from miRNA binding, thus increasing gene expression. Notably, we found that the 3′ UTR lengths of the mRNA transcriptome were correlated with the expression levels of APA factors. We further identified that CPSF2 and CPEB3 may serve as key regulators in both datasets. Finally, four LUAD subtypes according to different APA factor expression patterns displayed distinct clinical results and oncogenic features related to tumor microenvironment including immune, metabolic, and hypoxic status.InterpretationOur analyses characterize the APA profiles among patients with LUAD and identify two key regulators for APA events in LUAD, CPSF2 and CPEB3, which could serve as the potential prognostic genes in LUAD.


2017 ◽  
Author(s):  
Qingguo Wang ◽  
Joshua Armenia ◽  
Chao Zhang ◽  
Alexander V. Penson ◽  
Ed Reznik ◽  
...  

AbstractDriven by the recent advances of next generation sequencing (NGS) technologies and an urgent need to decode complex human diseases, a multitude of large-scale studies were conducted recently that have resulted in an unprecedented volume of whole transcriptome sequencing (RNA-seq) data. While these data offer new opportunities to identify the mechanisms underlying disease, the comparison of data from different sources poses a great challenge, due to differences in sample and data processing. Here, we present a pipeline that processes and unifies RNA-seq data from different studies, which includes uniform realignment and gene expression quantification as well as batch effect removal. We find that uniform alignment and quantification is not sufficient when combining RNA-seq data from different sources and that the removal of other batch effects is essential to facilitate data comparison. We have processed data from the Genotype Tissue Expression project (GTEx) and The Cancer Genome Atlas (TCGA) and have successfully corrected for study-specific biases, enabling comparative analysis across studies. The normalized data are available for download via GitHub (at https://github.com/mskcc/RNAseqDB).


Cancers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1273
Author(s):  
Wei Tse Li ◽  
Angela E. Zou ◽  
Christine O. Honda ◽  
Hao Zheng ◽  
Xiao Qi Wang ◽  
...  

Immunotherapy has emerged in recent years as arguably the most effective treatment for advanced hepatocellular carcinoma (HCC), but the failure of a large percentage of patients to respond to immunotherapy remains as the ultimate obstacle to successful treatment. Etiology-associated dysregulation of immune-associated (IA) genes may be central to the development of this differential clinical response. We identified immune-associated genes potentially dysregulated by alcohol or viral hepatitis B in HCC and validated alcohol-induced dysregulations in vitro while using large-scale RNA-sequencing data from The Cancer Genome Atlas (TCGA). Thirty-four clinically relevant dysregulated IA genes were identified. We profiled the correlation of all genomic alterations in HCC patients to IA gene expression while using the information theory-based algorithm REVEALER to investigate the molecular mechanism for their dysregulation and explore the possibility of genome-based patient stratification. We also studied gene expression regulators and identified multiple microRNAs that were implicated in HCC pathogenesis that can potentially regulate these IA genes’ expression. Our study identified potential key pathways, including the IL-7 signaling pathway and TNFRSF4 (OX40)- NF-κB pathway, to target in immunotherapy treatments and presents microRNAs as promising therapeutic targets for dysregulated IA genes because of their extensive regulatory roles in the cancer immune landscape.


2021 ◽  
Author(s):  
Tim O. Nieuwenhuis ◽  
Avi Z. Rosenberg ◽  
Matthew N. McCall ◽  
Marc K. Halushka

AbstractThe extracellular matrix (ECM) has historically been explored through proteomic methods. Whether or not global transcriptomics can yield meaningful information on the human matrisome is unknown. Gene expression data from 17,382 samples across 52 tissues, were obtained from the Genotype-Tissue Expression (GTEx) project. Additional datasets were obtained from The Cancer Genome Atlas (TCGA) program and the Gene Expression Omnibus for comparisons. Gene expression levels generally recapitulated proteome-derived matrisome expression patterns. Further, matrisome gene expression properly clustered tissue types, with some matrisome genes including SERPIN family members having tissue-restricted expression patterns. Deeper analyses revealed 388 genes varied by age and 222 varied by sex in at least one tissue, with expression correlating with digitally imaged histologic tissue features. A comparison of TCGA tumor, TCGA adjacent normal and GTEx normal tissues demonstrated robustness of the GTEx samples as a generalized control, while also determining a common primary tumor matrisome. Additionally, GTEx tissues served as a useful non-diseased control in a separate study of idiopathic pulmonary fibrosis matrix changes. Altogether, these findings indicate that the transcriptome, in general, and GTEx in particular, has value in understanding the state of organ ECM.


2019 ◽  
Vol 20 (22) ◽  
pp. 5697 ◽  
Author(s):  
Michelle E. Pewarchuk ◽  
Mateus C. Barros-Filho ◽  
Brenda C. Minatel ◽  
David E. Cohn ◽  
Florian Guisier ◽  
...  

Recent studies have uncovered microRNAs (miRNAs) that have been overlooked in early genomic explorations, which show remarkable tissue- and context-specific expression. Here, we aim to identify and characterize previously unannotated miRNAs expressed in gastric adenocarcinoma (GA). Raw small RNA-sequencing data were analyzed using the miRMaster platform to predict and quantify previously unannotated miRNAs. A discovery cohort of 475 gastric samples (434 GA and 41 adjacent nonmalignant samples), collected by The Cancer Genome Atlas (TCGA), were evaluated. Candidate miRNAs were similarly assessed in an independent cohort of 25 gastric samples. We discovered 170 previously unannotated miRNA candidates expressed in gastric tissues. The expression of these novel miRNAs was highly specific to the gastric samples, 143 of which were significantly deregulated between tumor and nonmalignant contexts (p-adjusted < 0.05; fold change > 1.5). Multivariate survival analyses showed that the combined expression of one previously annotated miRNA and two novel miRNA candidates was significantly predictive of patient outcome. Further, the expression of these three miRNAs was able to stratify patients into three distinct prognostic groups (p = 0.00003). These novel miRNAs were also present in the independent cohort (43 sequences detected in both cohorts). Our findings uncover novel miRNA transcripts in gastric tissues that may have implications in the biology and management of gastric adenocarcinoma.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ewe Seng Ch’ng

AbstractDistinguishing bladder urothelial carcinomas from prostate adenocarcinomas for poorly differentiated carcinomas derived from the bladder neck entails the use of a panel of lineage markers to help make this distinction. Publicly available The Cancer Genome Atlas (TCGA) gene expression data provides an avenue to examine utilities of these markers. This study aimed to verify expressions of urothelial and prostate lineage markers in the respective carcinomas and to seek the relative importance of these markers in making this distinction. Gene expressions of these markers were downloaded from TCGA Pan-Cancer database for bladder and prostate carcinomas. Differential gene expressions of these markers were analyzed. Standard linear discriminant analyses were applied to establish the relative importance of these markers in lineage determination and to construct the model best in making the distinction. This study shows that all urothelial lineage genes except for the gene for uroplakin III were significantly expressed in bladder urothelial carcinomas (p < 0.001). In descending order of importance to distinguish from prostate adenocarcinomas, genes for uroplakin II, S100P, GATA3 and thrombomodulin had high discriminant loadings (> 0.3). All prostate lineage genes were significantly expressed in prostate adenocarcinomas(p < 0.001). In descending order of importance to distinguish from bladder urothelial carcinomas, genes for NKX3.1, prostate specific antigen (PSA), prostate-specific acid phosphatase, prostein, and prostate-specific membrane antigen had high discriminant loadings (> 0.3). Combination of gene expressions for uroplakin II, S100P, NKX3.1 and PSA approached 100% accuracy in tumor classification both in the training and validation sets. Mining gene expression data, a combination of four lineage markers helps distinguish between bladder urothelial carcinomas and prostate adenocarcinomas.


Sign in / Sign up

Export Citation Format

Share Document