scholarly journals Identification of Distinct Heterogenic Subtypes and Molecular Signatures Associated With African Ancestry in Triple Negative Breast Cancer Using Quantified Genetic Ancestry Models in Admixed Race Populations

Author(s):  
Melissa Davis ◽  
Rachel Martini ◽  
Lisa Newman ◽  
Olivier Elemento ◽  
Jason White ◽  
...  

Triple negative breast cancers (TNBCs) are molecularly heterogeneous, and the link between their aggressiveness with African ancestry is not established. We investigated primary TNBCs for gene expression among self-reported race (SRR) groups of African American (AA, n=42) and European American (EA, n=33) women. Using The Cancer Genome Atlas (TCGA) approaches, we analyzed RNA sequencing data to measure changes in genome-wide expression and used logistic regressions to identify ancestry-associated gene expression signatures. To determine global ancestry, GATK best practices were followed for variant calling, and used the 1000 Genomes Project as reference data. We identified >150 African ancestry-associated genes and found that, compared to SRR, quantitative genetic analysis was a more robust method to identify racial/ethnic-specific genes that were differentially expressed. A subset of African ancestry-specific genes that were upregulated in TNBCs of our AA patients were validated in TCGA data. In AA patients, there was a higher incidence of basal-like 2 tumors and altered TP53, NFB1, and AKT pathways. The distinct distribution of TNBC subtypes and altered oncologic pathways show that the ethnic variations in TNBCs are driven by shared genetic ancestry. Thus, to appreciate the molecular diversity of TNBCs, tumors from patients of various ancestral origins should be evaluated.

Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1220
Author(s):  
Melissa Davis ◽  
Rachel Martini ◽  
Lisa Newman ◽  
Olivier Elemento ◽  
Jason White ◽  
...  

Triple negative breast cancers (TNBCs) are molecularly heterogeneous, and the link between their aggressiveness with African ancestry is not established. We investigated primary TNBCs for gene expression among self-reported race (SRR) groups of African American (AA, n = 42) and European American (EA, n = 33) women. RNA sequencing data were analyzed to measure changes in genome-wide expression, and we utilized logistic regressions to identify ancestry-associated gene expression signatures. Using SNVs identified from our RNA sequencing data, global ancestry was estimated. We identified 156 African ancestry-associated genes and found that, compared to SRR, quantitative genetic analysis was a more robust method to identify racial/ethnic-specific genes that were differentially expressed. A subset of African ancestry-specific genes that were upregulated in TNBCs of our AA patients were validated in TCGA data. In AA patients, there was a higher incidence of basal-like two tumors and altered TP53, NFB1, and AKT pathways. The distinct distribution of TNBC subtypes and altered oncologic pathways show that the ethnic variations in TNBCs are driven by shared genetic ancestry. Thus, to appreciate the molecular diversity of TNBCs, tumors from patients of various ancestral origins should be evaluated.


2016 ◽  
Author(s):  
Nao Hiranuma ◽  
Jie Liu ◽  
Chaozhong Song ◽  
Jacob Goldsmith ◽  
Michael Dorschner ◽  
...  

About 16% of breast cancers fall into a clinically aggressive category designated triple negative (TNBC) due to a lack of ERBB2, estrogen receptor and progesterone receptor expression1-3. The mutational spectrum of TNBC has been characterized as part of The Cancer Genome Atlas (TCGA)4; however, snapshots of primary tumors cannot reveal the mechanisms by which TNBCs progress and spread. To address this limitation we initiated the Intensive Trial of OMics in Cancer (ITOMIC)-001, in which patients with metastatic TNBC undergo multiple biopsies over space and time5. Whole exome sequencing (WES) of 67 samples from 11 patients identified 426 genes containing multiple distinct single nucleotide variants (SNVs) within the same sample, instances we term Multiple SNVs affecting the Same Gene and Sample (MSSGS). We find that >90% of MSSGS result from cis-compound mutations (in which both SNVs affect the same allele), that MSSGS comprised of SNVs affecting adjacent nucleotides arise from single mutational events, and that most other MSSGS result from the sequential acquisition of SNVs. Some MSSGS drive cancer progression, as exemplified by a TNBC driven by FGFR2(S252W;Y375C). MSSGS are more prevalent in TNBC than other breast cancer subtypes and occur at higher-than-expected frequencies across TNBC samples within TCGA. MSSGS may denote genes that play as yet unrecognized roles in cancer progression.


2019 ◽  
Author(s):  
Swati Venkat ◽  
Arwen A. Tisdale ◽  
Johann R. Schwarz ◽  
Abdulrahman A. Alahmari ◽  
H. Carlo Maurer ◽  
...  

ABSTRACTAlternative polyadenylation (APA) is a gene regulatory process that dictates mRNA 3’-UTR length, resulting in changes in mRNA stability and localization. APA is frequently disrupted in cancer and promotes tumorigenesis through altered expression of oncogenes and tumor suppressors. Pan-cancer analyses have revealed common APA events across the tumor landscape; however, little is known about tumor type-specific alterations that may uncover novel events and vulnerabilities. Here we integrate RNA-sequencing data from the Genotype-Tissue Expression (GTEx) project and The Cancer Genome Atlas (TCGA) to comprehensively analyze APA events in 148 pancreatic ductal adenocarcinomas (PDAs). We report widespread, recurrent and functionally relevant 3’-UTR alterations associated with gene expression changes of known and newly identified PDA growth-promoting genes and experimentally validate the effects of these APA events on expression. We find enrichment for APA events in genes associated with known PDA pathways, loss of tumor-suppressive miRNA binding sites, and increased heterogeneity in 3’-UTR forms of metabolic genes. Survival analyses reveal a subset of 3’-UTR alterations that independently characterize a poor prognostic cohort among PDA patients. Finally, we identify and validate the casein kinase CK1α as an APA-regulated therapeutic target in PDA. Knockdown or pharmacological inhibition of CK1α attenuates PDA cell proliferation and clonogenic growth. Our single-cancer analysis reveals APA as an underappreciated driver of pro-tumorigenic gene expression in PDA via the loss of miRNA regulation.


Cancers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1273
Author(s):  
Wei Tse Li ◽  
Angela E. Zou ◽  
Christine O. Honda ◽  
Hao Zheng ◽  
Xiao Qi Wang ◽  
...  

Immunotherapy has emerged in recent years as arguably the most effective treatment for advanced hepatocellular carcinoma (HCC), but the failure of a large percentage of patients to respond to immunotherapy remains as the ultimate obstacle to successful treatment. Etiology-associated dysregulation of immune-associated (IA) genes may be central to the development of this differential clinical response. We identified immune-associated genes potentially dysregulated by alcohol or viral hepatitis B in HCC and validated alcohol-induced dysregulations in vitro while using large-scale RNA-sequencing data from The Cancer Genome Atlas (TCGA). Thirty-four clinically relevant dysregulated IA genes were identified. We profiled the correlation of all genomic alterations in HCC patients to IA gene expression while using the information theory-based algorithm REVEALER to investigate the molecular mechanism for their dysregulation and explore the possibility of genome-based patient stratification. We also studied gene expression regulators and identified multiple microRNAs that were implicated in HCC pathogenesis that can potentially regulate these IA genes’ expression. Our study identified potential key pathways, including the IL-7 signaling pathway and TNFRSF4 (OX40)- NF-κB pathway, to target in immunotherapy treatments and presents microRNAs as promising therapeutic targets for dysregulated IA genes because of their extensive regulatory roles in the cancer immune landscape.


2019 ◽  
Vol 20 (22) ◽  
pp. 5697 ◽  
Author(s):  
Michelle E. Pewarchuk ◽  
Mateus C. Barros-Filho ◽  
Brenda C. Minatel ◽  
David E. Cohn ◽  
Florian Guisier ◽  
...  

Recent studies have uncovered microRNAs (miRNAs) that have been overlooked in early genomic explorations, which show remarkable tissue- and context-specific expression. Here, we aim to identify and characterize previously unannotated miRNAs expressed in gastric adenocarcinoma (GA). Raw small RNA-sequencing data were analyzed using the miRMaster platform to predict and quantify previously unannotated miRNAs. A discovery cohort of 475 gastric samples (434 GA and 41 adjacent nonmalignant samples), collected by The Cancer Genome Atlas (TCGA), were evaluated. Candidate miRNAs were similarly assessed in an independent cohort of 25 gastric samples. We discovered 170 previously unannotated miRNA candidates expressed in gastric tissues. The expression of these novel miRNAs was highly specific to the gastric samples, 143 of which were significantly deregulated between tumor and nonmalignant contexts (p-adjusted < 0.05; fold change > 1.5). Multivariate survival analyses showed that the combined expression of one previously annotated miRNA and two novel miRNA candidates was significantly predictive of patient outcome. Further, the expression of these three miRNAs was able to stratify patients into three distinct prognostic groups (p = 0.00003). These novel miRNAs were also present in the independent cohort (43 sequences detected in both cohorts). Our findings uncover novel miRNA transcripts in gastric tissues that may have implications in the biology and management of gastric adenocarcinoma.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ewe Seng Ch’ng

AbstractDistinguishing bladder urothelial carcinomas from prostate adenocarcinomas for poorly differentiated carcinomas derived from the bladder neck entails the use of a panel of lineage markers to help make this distinction. Publicly available The Cancer Genome Atlas (TCGA) gene expression data provides an avenue to examine utilities of these markers. This study aimed to verify expressions of urothelial and prostate lineage markers in the respective carcinomas and to seek the relative importance of these markers in making this distinction. Gene expressions of these markers were downloaded from TCGA Pan-Cancer database for bladder and prostate carcinomas. Differential gene expressions of these markers were analyzed. Standard linear discriminant analyses were applied to establish the relative importance of these markers in lineage determination and to construct the model best in making the distinction. This study shows that all urothelial lineage genes except for the gene for uroplakin III were significantly expressed in bladder urothelial carcinomas (p < 0.001). In descending order of importance to distinguish from prostate adenocarcinomas, genes for uroplakin II, S100P, GATA3 and thrombomodulin had high discriminant loadings (> 0.3). All prostate lineage genes were significantly expressed in prostate adenocarcinomas(p < 0.001). In descending order of importance to distinguish from bladder urothelial carcinomas, genes for NKX3.1, prostate specific antigen (PSA), prostate-specific acid phosphatase, prostein, and prostate-specific membrane antigen had high discriminant loadings (> 0.3). Combination of gene expressions for uroplakin II, S100P, NKX3.1 and PSA approached 100% accuracy in tumor classification both in the training and validation sets. Mining gene expression data, a combination of four lineage markers helps distinguish between bladder urothelial carcinomas and prostate adenocarcinomas.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Tiago Azevedo ◽  
Giovanna Maria Dimitri ◽  
Pietro Lió ◽  
Eric R. Gamazon

AbstractHere, we performed a comprehensive intra-tissue and inter-tissue multilayer network analysis of the human transcriptome. We generated an atlas of communities in gene co-expression networks in 49 tissues (GTEx v8), evaluated their tissue specificity, and investigated their methodological implications. UMAP embeddings of gene expression from the communities (representing nearly 18% of all genes) robustly identified biologically-meaningful clusters. Notably, new gene expression data can be embedded into our algorithmically derived models to accelerate discoveries in high-dimensional molecular datasets and downstream diagnostic or prognostic applications. We demonstrate the generalisability of our approach through systematic testing in external genomic and transcriptomic datasets. Methodologically, prioritisation of the communities in a transcriptome-wide association study of the biomarker C-reactive protein (CRP) in 361,194 individuals in the UK Biobank identified genetically-determined expression changes associated with CRP and led to considerably improved performance. Furthermore, a deep learning framework applied to the communities in nearly 11,000 tumors profiled by The Cancer Genome Atlas across 33 different cancer types learned biologically-meaningful latent spaces, representing metastasis (p < 2.2 × 10−16) and stemness (p < 2.2 × 10−16). Our study provides a rich genomic resource to catalyse research into inter-tissue regulatory mechanisms, and their downstream consequences on human disease.


2021 ◽  
Vol 22 (4) ◽  
pp. 1820
Author(s):  
Anna Makuch-Kocka ◽  
Janusz Kocki ◽  
Anna Brzozowska ◽  
Jacek Bogucki ◽  
Przemysław Kołodziej ◽  
...  

The BIRC (baculoviral IAP repeat-containing; BIRC) family genes encode for Inhibitor of Apoptosis (IAP) proteins. The dysregulation of the expression levels of the genes in question in cancer tissue as compared to normal tissue suggests that the apoptosis process in cancer cells was disturbed, which may be associated with the development and chemoresistance of triple negative breast cancer (TNBC). In our study, we determined the expression level of eight genes from the BIRC family using the Real-Time PCR method in patients with TNBC and compared the obtained results with clinical data. Additionally, using bioinformatics tools (Ualcan and The Breast Cancer Gene-Expression Miner v4.5 (bc-GenExMiner v4.5)), we compared our data with the data in the Cancer Genome Atlas (TCGA) database. We observed diverse expression pattern among the studied genes in breast cancer tissue. Comparing the expression level of the studied genes with the clinical data, we found that in patients diagnosed with breast cancer under the age of 50, the expression levels of all studied genes were higher compared to patients diagnosed after the age of 50. We observed that in patients with invasion of neoplastic cells into lymphatic vessels and fat tissue, the expression levels of BIRC family genes were lower compared to patients in whom these features were not noted. Statistically significant differences in gene expression were also noted in patients classified into three groups depending on the basis of the Scarff-Bloom and Richardson (SBR) Grading System.


Sign in / Sign up

Export Citation Format

Share Document