scholarly journals A collection of genetic mouse lines and related tools for inducible and reversible intersectional misexpression

2019 ◽  
Author(s):  
Elham Ahmadzadeh ◽  
N. Sumru Bayin ◽  
Xinli Qu ◽  
Aditi Singh ◽  
Linda Madisen ◽  
...  

AbstractThanks to many advances in genetic manipulation, mouse models have become very powerful in their ability to interrogate biological processes. In order to precisely target expression of a gene of interest to particular cell types, intersectional genetic approaches utilizing two promoter/enhancers unique to a cell type are ideal. Within these methodologies, variants that add temporal control of gene expression are the most powerful. We describe the development, validation and application of an intersectional approach that involves three transgenes, requiring the intersection of two promoter/enhancers to target gene expression to precise cell types. Furthermore, the approach utilizes available lines expressing tTA/rTA to control timing of gene expression based on whether doxycycline is absent or present, respectively. We also show that the approach can be extended to other animal models, using chicken embryos. We generated three mouse lines targeted at the Tigre (Igs7) locus with TRE-loxP-tdTomato-loxP upstream of three genes (p21, DTA and Ctgf) and combined them with Cre and tTA/rtTA lines that target expression to the cerebellum and limbs. Our tools will facilitate unraveling biological questions in multiple fields and organisms.Summary statementAhmadzadeh et al. present a collection of four mouse lines and genetic tools for misexpression-mediated manipulation of cellular activity with high spatiotemporal control, in a reversible manner.

2019 ◽  
Author(s):  
Prasad U. Bandodkar ◽  
Hadel Al Asafen ◽  
Gregory T. Reeves

AbstractA feed forward loop (FFL) is commonly observed in several biological networks. The FFL network motif has been mostly been studied with respect to variation of the input signal in time, with only a few studies of FFL activity in a spatially distributed system such as morphogen-mediated tissue patterning. However, most morphogen gradients also evolve in time. We studied the spatiotemporal behavior of a coherent FFL in two contexts: (1) a generic, oscillating morphogen gradient and (2) the dorsal-ventral patterning of the early Drosophila embryo by a gradient of the NF-κB homolog Dorsal with its early target Twist. In both models, we found features in the dynamics of the intermediate node – phase difference and noise filtering – that were largely independent of the parameterization of the models, and thus were functions of the structure of the FFL itself. In the Dorsal gradient model, we also found that the dynamics of Dorsal require maternal pioneering factor Zelda for proper target gene expression.


1991 ◽  
Vol 11 (1) ◽  
pp. 558-563
Author(s):  
J J Loros ◽  
J C Dunlap

Although an extensive number of biological processes are under the daily control of the circadian biological clock, little is known about how the clock maintains its regulatory networks within a cell. An important aspect of this temporal control is the daily control of gene expression. Previously we identified two morning-specific genes that are regulated by the clock through daily control of gene expression (J. Loros, S. Denome, and J.C. Dunlap, Science 243:385-388, 1989). We have now introduced a method for transcriptional analysis in Neurospora crassa and used this nuclear run-on procedure to show that regulation of mRNA abundance for these two morning-specific genes occurs at the level of transcription. This transcriptional regulation by the circadian clock provides a basis for isolating circadian rhythm mutants.


1991 ◽  
Vol 11 (1) ◽  
pp. 558-563 ◽  
Author(s):  
J J Loros ◽  
J C Dunlap

Although an extensive number of biological processes are under the daily control of the circadian biological clock, little is known about how the clock maintains its regulatory networks within a cell. An important aspect of this temporal control is the daily control of gene expression. Previously we identified two morning-specific genes that are regulated by the clock through daily control of gene expression (J. Loros, S. Denome, and J.C. Dunlap, Science 243:385-388, 1989). We have now introduced a method for transcriptional analysis in Neurospora crassa and used this nuclear run-on procedure to show that regulation of mRNA abundance for these two morning-specific genes occurs at the level of transcription. This transcriptional regulation by the circadian clock provides a basis for isolating circadian rhythm mutants.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Wiruntita Chankeaw ◽  
Sandra Lignier ◽  
Christophe Richard ◽  
Theodoros Ntallaris ◽  
Mariam Raliou ◽  
...  

Abstract Background A number of studies have examined mRNA expression profiles of bovine endometrium at estrus and around the peri-implantation period of pregnancy. However, to date, these studies have been performed on the whole endometrium which is a complex tissue. Consequently, the knowledge of cell-specific gene expression, when analysis performed with whole endometrium, is still weak and obviously limits the relevance of the results of gene expression studies. Thus, the aim of this study was to characterize specific transcriptome of the three main cell-types of the bovine endometrium at day-15 of the estrus cycle. Results In the RNA-Seq analysis, the number of expressed genes detected over 10 transcripts per million was 6622, 7814 and 8242 for LE, GE and ST respectively. ST expressed exclusively 1236 genes while only 551 transcripts were specific to the GE and 330 specific to LE. For ST, over-represented biological processes included many regulation processes and response to stimulus, cell communication and cell adhesion, extracellular matrix organization as well as developmental process. For GE, cilium organization, cilium movement, protein localization to cilium and microtubule-based process were the only four main biological processes enriched. For LE, over-represented biological processes were enzyme linked receptor protein signaling pathway, cell-substrate adhesion and circulatory system process. Conclusion The data show that each endometrial cell-type has a distinct molecular signature and provide a significantly improved overview on the biological process supported by specific cell-types. The most interesting result is that stromal cells express more genes than the two epithelial types and are associated with a greater number of pathways and ontology terms.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Benjamin H. Weinberg ◽  
Jang Hwan Cho ◽  
Yash Agarwal ◽  
N. T. Hang Pham ◽  
Leidy D. Caraballo ◽  
...  

Abstract Site-specific DNA recombinases are important genome engineering tools. Chemical- and light-inducible recombinases, in particular, enable spatiotemporal control of gene expression. However, inducible recombinases are scarce due to the challenge of engineering high performance systems, thus constraining the sophistication of genetic circuits and animal models that can be created. Here we present a library of >20 orthogonal inducible split recombinases that can be activated by small molecules, light and temperature in mammalian cells and mice. Furthermore, we engineer inducible split Cre systems with better performance than existing systems. Using our orthogonal inducible recombinases, we create a genetic switchboard that can independently regulate the expression of 3 different cytokines in the same cell, a tripartite inducible Flp, and a 4-input AND gate. We quantitatively characterize the inducible recombinases for benchmarking their performances, including computation of distinguishability of outputs. This library expands capabilities for multiplexed mammalian gene expression control.


2012 ◽  
Vol 9 (3) ◽  
pp. 266-269 ◽  
Author(s):  
Xue Wang ◽  
Xianjun Chen ◽  
Yi Yang

2020 ◽  
Vol 249 (3) ◽  
pp. 369-382
Author(s):  
Prasad U. Bandodkar ◽  
Hadel Al Asafen ◽  
Gregory T. Reeves

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Ana J. Chucair-Elliott ◽  
Sarah R. Ocañas ◽  
David R. Stanford ◽  
Victor A. Ansere ◽  
Kyla B. Buettner ◽  
...  

AbstractEpigenetic regulation of gene expression occurs in a cell type-specific manner. Current cell-type specific neuroepigenetic studies rely on cell sorting methods that can alter cell phenotype and introduce potential confounds. Here we demonstrate and validate a Nuclear Tagging and Translating Ribosome Affinity Purification (NuTRAP) approach for temporally controlled labeling and isolation of ribosomes and nuclei, and thus RNA and DNA, from specific central nervous system cell types. Analysis of gene expression and DNA modifications in astrocytes or microglia from the same animal demonstrates differential usage of DNA methylation and hydroxymethylation in CpG and non-CpG contexts that corresponds to cell type-specific gene expression. Application of this approach in LPS treated mice uncovers microglia-specific transcriptome and epigenome changes in inflammatory pathways that cannot be detected with tissue-level analysis. The NuTRAP model and the validation approaches presented can be applied to any brain cell type for which a cell type-specific cre is available.


Biology Open ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. bio055343 ◽  
Author(s):  
Daniel Chu ◽  
An Nguyen ◽  
Spenser S. Smith ◽  
Zuzana Vavrušová ◽  
Richard A. Schneider

ABSTRACTPrecisely altering gene expression is critical for understanding molecular processes of embryogenesis. Although some tools exist for transgene misexpression in developing chick embryos, we have refined and advanced them by simplifying and optimizing constructs for spatiotemporal control. To maintain expression over the entire course of embryonic development we use an enhanced piggyBac transposon system that efficiently integrates sequences into the host genome. We also incorporate a DNA targeting sequence to direct plasmid translocation into the nucleus and a D4Z4 insulator sequence to prevent epigenetic silencing. We designed these constructs to minimize their size and maximize cellular uptake, and to simplify usage by placing all of the integrating sequences on a single plasmid. Following electroporation of stage HH8.5 embryos, our tetracycline-inducible promoter construct produces robust transgene expression in the presence of doxycycline at any point during embryonic development in ovo or in culture. Moreover, expression levels can be modulated by titrating doxycycline concentrations and spatial control can be achieved using beads or gels. Thus, we have generated a novel, sensitive, tunable, and stable inducible-promoter system for high-resolution gene manipulation in vivo.


Sign in / Sign up

Export Citation Format

Share Document