scholarly journals Using nano zero valent iron supported on diatomite to remove acid blue dye: synthesis, characterization and toxicology test

2019 ◽  
Author(s):  
Erick Justo-Cabrera ◽  
Ernesto Flores-Rojas ◽  
Denhi Schnabel ◽  
Héctor Poggi-Varaldo ◽  
Omar Solorza-Feria ◽  
...  

AbstractThe aim of this work was to synthesize and characterize nanoscale zero-valent iron (NZVI) supported on diatomaceous earth (DE) at two different molar concentration 3 M and 4M (nZVI-DE-1 nZVI-DE-2), to test the decolorization treatment of acid blue dye (AB) and perform a toxicological test using zebrafish. The synthesis of the nanoparticles was obtained using the chemical reduction method and the material was characterized by X-ray diffraction, Scanning Electron Microscopy (SEM), Energy-Dispersive X-Ray (EDX), and transmission electron microscopy and Specific Surface Area (BET). The results showed spherical forms in clusters between 20 to 40 nm of zero valent iron supported on diatomaceous earth. The removal of 1 g/l of AB from water treated with NZVI-DE-1 and NZVI-DE-2 reached the decolorization of 90% and 98% of all dye. While controls like NZVI and DE-1 and DE-2 achieved the removal of 40, 37 and 24 % of the dye. Toxicological analysis using zebrafish showed that AB causes a severe defect in development and embryos die after exposure. However, the water samples treated with NZVI-DE-1 and NZVI-DE-2 are not harmful for the zebrafish embryos during the first 24 hours. We conclude that the use of NZVI-DE-1 and NZVI-DE-2 is a promising treatment for dye pollution.

2021 ◽  
Vol 13 (24) ◽  
pp. 13899
Author(s):  
Ernesto Flores-Rojas ◽  
Denhi Schnabel ◽  
Erick Justo-Cabrera ◽  
Omar Solorza-Feria ◽  
Héctor M. Poggi-Varaldo ◽  
...  

This work aimed to synthesize and characterize nanoscale zero-valent iron (nZVI), supported on diatomaceous earth (DE) at two different molar concentrations, 3 and 4 M (nZVI-DE-1 nZVI-DE-2), to test the decolorization treatment of acid blue dye (AB) and perform a toxicological test using zebrafish. The synthesis of the nanoparticles was obtained using the chemical reduction method. The material was fully characterized by X-ray diffraction, scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and transmission electron microscopy and specific surface area (BET). The results showed spherical forms in clusters between 20 and 40 nm of zero-valent iron supported on diatomaceous earth. The removal of 1 g/L of AB from water treated with nZVI-DE-1 and nZVI-DE-2 reached the decolorization of 90% and 98% of all dye. By contrast, controls such as nZVI and DE-1 and DE-2 removed 40%, 37%, and 24% of the dye. Toxicological analysis using zebrafish showed that AB causes a severe defect in development, and embryos die after exposure. However, the water samples treated with nZVI-DE-1 and nZVI-DE-2 are not harmful to the zebrafish embryos during the first 24 h. However, all embryos exposed to the new material for more than 48 hpf had cardiac edema, smaller eyes, and curved and smaller bodies with less pigmentation.


2016 ◽  
Vol 09 (03) ◽  
pp. 1650045 ◽  
Author(s):  
Pei-Ying Li ◽  
Kai-Yu Cheng ◽  
Xiu-Cheng Zheng ◽  
Pu Liu ◽  
Xiu-Juan Xu

Chitosan-ionic liquid conjugation (CILC), which was prepared through the reaction of 1-(4-bromobutyl)-3-methylimidazolium bromide (BBMIB) with chitosan, was firstly used to prepare functionalized graphene composite via the chemical reduction of graphene oxide (GO). The obtained water soluble graphene-based composite was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), ultraviolet-visible (UV–Vis) spectroscopy and so on. CILC-RGO showed excellent dispersion stability in water at the concentration of 2.0 mg/mL, which was stable for several months without any precipitate. This may be ascribed to the electrostatic attraction and [Formula: see text]–[Formula: see text] interaction between CILC and graphene.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Manoj Pudukudy ◽  
Zahira Yaakob

α-Mn2O3 microspheres with high phase purity, crystallinity, and surface area were synthesized by the thermal decomposition of precipitated MnCO3 microspheres without the use of any structure directing agents and tedious reaction conditions. The prepared Mn2O3 microspheres were characterized by Fourier transform infrared (FTIR) spectroscopy, powder X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), and Brunauer-Emmett-Teller (BET) and photoluminescence (PL) studies. The complete thermal transformation of MnCO3 to Mn2O3 was clearly shown by the FTIR and XRD analysis. The electron microscopic images clearly confirmed the microsphere-like morphology of the products with some structural deformation for the calcined Mn2O3 sample. The mesoporous texture generated from the interaggregation of subnanoparticles in the microstructures is visibly evident from the TEM and BET studies. Moreover, the Mn2O3 microstructures showed a moderate photocatalytic activity for the degradation of methylene blue dye pollutant under UV light irradiation, using air as the potential oxidizing agent.


2020 ◽  
Vol 82 (7) ◽  
pp. 1339-1349
Author(s):  
Fengfeng Ma ◽  
Bakunzibake Philippe ◽  
Baowei Zhao ◽  
Jingru Diao ◽  
Jian Li

Abstract Flax straw biochar (FSBC)-supported nanoscale zero-valent iron (nZVI) composite (nZVI-FSBC) combining the advantages of nZVI and biochar was synthesized and tested for Cr(VI) removal efficiency from aqueous solution. Surface morphology and structure of FSBC and nZVI-FSBC were characterized by scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and Brunauer–Emmett–Teller techniques, which help to clarify the mechanism of Cr(VI) removal from aqueous solution. The adsorption of Cr(VI) onto FSBC and nZVI-FSBC was best described by the pseudo-second-order and the Sips model. Compared with FSBC, nZVI-FSBC remarkably improved the performance in removing Cr(VI) under identical experimental conditions. Due to the collaborative effect of adsorption and reduction of nZVI-FSBC, the adsorption capacity of nZVI-FSBC for Cr(VI) is up to 186.99 mg/g. The results obtained by XPS, XRD, and FTIR confirmed that adsorption and reduction dominated the processes of Cr(VI) removal by nZVI-FSBC. As a supporter, FSBC not only improved the dispersion of nZVI, but also undertook the adsorption task of Cr(VI) removal. The surface oxygen-containing functional groups of nZVI-FSBC mainly participated in the adsorption part, and the nZVI promoted the Cr(VI) removal through the redox reactions. These observations indicated that the nZVI-FSBC can be considered as potential adsorbents to remove Cr(VI) for environment remediation.


2021 ◽  
Vol 25 (9) ◽  
pp. 71-78
Author(s):  
Nirmal Singh ◽  
Monika Jangid ◽  
Neetu Shorgar ◽  
Paras Tak

The photocatalytic degradation of Evans blue (EB) has been studied under visible light in the presence of nanocrystalline nickel doped cobalt (II) oxide as a photocatalyst. Nickel-cobalt (II) oxide was synthesized by using Sol-gel technique. The photocatalyst was characterized by Field Emission Scanning Electron Microscopy (FESEM), Energy-dispersive X-ray spectroscopy (EDX), X-ray Diffraction (XRD), Fourier-transform infrared (FTIR) and High-resolution transmission electron microscopy (HRTEM). Effect of various working parameters like pH, concentration, amount of nickel doped and undoped cobalt (II) oxide, dose of dopants, light intensity etc. on the rate of degradation of Evans blue was also investigated. On the basis of observations, a suitable mechanism for the photocatalytic degradation of Evans blue dye has been proposed.


Author(s):  
R. Gronsky

The phenomenon of clustering in Al-Ag alloys has been extensively studied since the early work of Guinierl, wherein the pre-precipitation state was characterized as an assembly of spherical, ordered, silver-rich G.P. zones. Subsequent x-ray and TEM investigations yielded results in general agreement with this model. However, serious discrepancies were later revealed by the detailed x-ray diffraction - based computer simulations of Gragg and Cohen, i.e., the silver-rich clusters were instead octahedral in shape and fully disordered, atleast below 170°C. The object of the present investigation is to examine directly the structural characteristics of G.P. zones in Al-Ag by high resolution transmission electron microscopy.


Author(s):  
Vicki L. Baliga ◽  
Mary Ellen Counts

Calcium is an important element in the growth and development of plants and one form of calcium is calcium oxalate. Calcium oxalate has been found in leaf seed, stem material plant tissue culture, fungi and lichen using one or more of the following methods—polarized light microscopy (PLM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction.Two methods are presented here for qualitatively estimating calcium oxalate in dried or fixed tobacco (Nicotiana) leaf from different stalk positions using PLM. SEM, coupled with energy dispersive x-ray spectrometry (EDS), and powder x-ray diffraction were used to verify that the crystals observed in the dried leaf with PLM were calcium oxalate.


2002 ◽  
Vol 716 ◽  
Author(s):  
Seok Woo Hong ◽  
Yong Sun Lee ◽  
Ki-Chul Park ◽  
Jong-Wan Park

AbstractThe effect of microstructure of dc magnetron sputtered TiN and TaN diffusion barriers on the palladium activation for autocatalytic electroless copper deposition has been investigated by using X-ray diffraction, sheet resistance measurement, field emission scanning electron microscopy (FE-SEM) and plan view transmission electron microscopy (TEM). The density of palladium nuclei on TaN diffusion barrier increases as the grain size of TaN films decreases, which was caused by increasing nitrogen content in TaN films. Plan view TEM results of TiN and TaN diffusiton barriers showed that palladium nuclei formed mainly on the grain boundaries of the diffusion barriers.


2003 ◽  
Vol 775 ◽  
Author(s):  
Donghai Wang ◽  
David T. Johnson ◽  
Byron F. McCaughey ◽  
J. Eric Hampsey ◽  
Jibao He ◽  
...  

AbstractPalladium nanowires have been electrodeposited into mesoporous silica thin film templates. Palladium continually grows and fills silica mesopores starting from a bottom conductive substrate, providing a ready and efficient route to fabricate a macroscopic palladium nanowire thin films for potentially use in fuel cells, electrodes, sensors, and other applications. X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicate it is possible to create different nanowire morphology such as bundles and swirling mesostructure based on the template pore structure.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 611
Author(s):  
Celia Marcos ◽  
María de Uribe-Zorita ◽  
Pedro Álvarez-Lloret ◽  
Alaa Adawy ◽  
Patricia Fernández ◽  
...  

Chert samples from different coastal and inland outcrops in the Eastern Asturias (Spain) were mineralogically investigated for the first time for archaeological purposes. X-ray diffraction, X-ray fluorescence, transmission electron microscopy, infrared and Raman spectroscopy and total organic carbon techniques were used. The low content of moganite, since its detection by X-ray diffraction is practically imperceptible, and the crystallite size (over 1000 Å) of the quartz in these cherts would be indicative of its maturity and could potentially be used for dating chert-tools recovered from archaeological sites. Also, this information can constitute essential data to differentiate the cherts and compare them with those used in archaeological tools. However, neither composition nor crystallite size would allow distinguishing between coastal and inland chert outcrops belonging to the same geological formations.


Sign in / Sign up

Export Citation Format

Share Document