scholarly journals Microbial Communities Associated with Sustained Anaerobic Reductive Dechlorination of α-, β-, γ-, and δ-Hexachlorocyclohexane Isomers to Monochlorobenzene and Benzene

2019 ◽  
Author(s):  
Wenjing Qiao ◽  
Luz A. Puentes Jácome ◽  
Xianjin Tang ◽  
Line Lomheim ◽  
Minqing Ivy Yang ◽  
...  

AbstractIntensive historical and worldwide use of the persistent pesticide technical-grade hexachlorocyclohexane (HCH), composed of the active ingredient γ-HCH (called lindane) along with several other HCH isomers, has led to widespread contamination. We derived four anaerobic enrichment cultures from HCH-contaminated soil capable of sustainably dechlorinating each of α-, β-, γ-, and δ-HCH isomers stoichiometrically and completely to benzene and monochlorobenzene (MCB). For each isomer, the dechlorination rates increased progressively from <3 µM/day to ∼12 µM/day over two years. The molar ratio of benzene to MCB produced was a function of the substrate isomer, and ranged from β (0.77±0.15), α (0.55±0.09), γ (0.13±0.02) to δ (0.06±0.02) in accordance with pathway predictions based on prevalence of antiperiplanar geometry. Cultivation with a different HCH isomer resulted in distinct bacterial communities, but similar archaeal communities. Data from 16S rRNA gene amplicon sequencing and quantitative PCR revealed significant increases in the absolute abundance of Pelobacter and Dehalobacter, especially in the α-HCH and δ-HCH cultures. This study provides the first direct comparison of shifts in anaerobic microbial communities induced by the dechlorination of distinct HCH isomers. It also uncovers candidate microorganisms responsible for the dechlorination of α-, β-, γ-, and δ-HCH, a key step towards better understanding and monitoring of natural attenuation processes and improving bioremediation technologies for HCH-contaminated sites.

2021 ◽  
Vol 12 ◽  
Author(s):  
Charles S. Cockell ◽  
Bettina Schaefer ◽  
Cornelia Wuchter ◽  
Marco J. L. Coolen ◽  
Kliti Grice ◽  
...  

We report on the effect of the end-Cretaceous impact event on the present-day deep microbial biosphere at the impact site. IODP-ICDP Expedition 364 drilled into the peak ring of the Chicxulub crater, México, allowing us to investigate the microbial communities within this structure. Increased cell biomass was found in the impact suevite, which was deposited within the first few hours of the Cenozoic, demonstrating that the impact produced a new lithological horizon that caused a long-term improvement in deep subsurface colonization potential. In the biologically impoverished granitic rocks, we observed increased cell abundances at impact-induced geological interfaces, that can be attributed to the nutritionally diverse substrates and/or elevated fluid flow. 16S rRNA gene amplicon sequencing revealed taxonomically distinct microbial communities in each crater lithology. These observations show that the impact caused geological deformation that continues to shape the deep subsurface biosphere at Chicxulub in the present day.


Forests ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 550 ◽  
Author(s):  
Huili Feng ◽  
Jiahuan Guo ◽  
Weifeng Wang ◽  
Xinzhang Song ◽  
Shuiqiang Yu

Understanding the composition and diversity of soil microorganisms that typically mediate the soil biogeochemical cycle is crucial for estimating greenhouse gas flux and mitigating global changes in plantation forests. Therefore, the objectives of this study were to investigate changes in diversity and relative abundance of bacteria and archaea with soil profiles and the potential factors influencing the vertical differentiation of microbial communities in a poplar plantation. We investigated soil bacterial and archaeal community compositions and diversities by 16S rRNA gene Illumina MiSeq sequencing at different depths of a poplar plantation forest in Chenwei forest farm, Sihong County, Jiangsu, China. More than 882,422 quality-filtered 16S rRNA gene sequences were obtained from 15 samples, corresponding to 34 classified phyla and 68 known classes. Ten major bacterial phyla and two archaeal phyla were found. The diversity of bacterial and archaeal communities decreased with depth of the plantation soil. Analysis of variance (ANOVA) of relative abundance of microbial communities exhibited that Nitrospirae, Verrucomicrobia, Latescibacteria, GAL15, SBR1093, and Euryarchaeota had significant differences at different depths. The transition zone of the community composition between the surface and subsurface occurred at 10–20 cm. Overall, our findings highlighted the importance of depth with regard to the complexity and diversity of microbial community composition in plantation forest soils.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mads Borgbjerg Jensen ◽  
Nadieh de Jonge ◽  
Maja Duus Dolriis ◽  
Caroline Kragelund ◽  
Christian Holst Fischer ◽  
...  

The enzymatic hydrolysis of lignocellulosic polymers is generally considered the rate-limiting step to methane production in anaerobic digestion of lignocellulosic biomass. The present study aimed to investigate how the hydrolytic microbial communities of three different types of anaerobic digesters adapted to lignocellulose-rich wheat straw in continuous stirred tank reactors operated for 134 days. Cellulase and xylanase activities were monitored weekly using fluorescently-labeled model substrates and the enzymatic profiles were correlated with changes in microbial community compositions based on 16S rRNA gene amplicon sequencing to identify key species involved in lignocellulose degradation. The enzymatic activity profiles and microbial community changes revealed reactor-specific adaption of phylogenetically different hydrolytic communities. The enzymatic activities correlated significantly with changes in specific taxonomic groups, including representatives of Ruminiclostridium, Caldicoprobacter, Ruminofilibacter, Ruminococcaceae, Treponema, and Clostridia order MBA03, all of which have been linked to cellulolytic and xylanolytic activity in the literature. By identifying microorganisms with similar development as the cellulase and xylanase activities, the proposed correlation method constitutes a promising approach for deciphering essential cellulolytic and xylanolytic microbial groups for anaerobic digestion of lignocellulosic biomass.


2019 ◽  
Vol 8 (36) ◽  
Author(s):  
Takeshi Yamada ◽  
Jun Harada ◽  
Yuki Okazaki ◽  
Tsuyoshi Yamaguchi ◽  
Atsushi Nakano

We analyzed the prokaryotes in bulking and healthy sludge from a mesophilic expanded granular sludge bed reactor treating wastewater with high organic content by 16S rRNA gene amplicon sequencing. We tabulated the microbiota at the phylum level, providing a framework for avoiding sludge bulking.


Author(s):  
Maximilienne Toetie Allaart ◽  
Gerben Roelandt Stouten ◽  
Diana Z. Sousa ◽  
Robbert Kleerebezem

Anaerobic microbial communities can produce carboxylic acids of medium chain length (e.g., caproate, caprylate) by elongating short chain fatty acids through reversed β-oxidation. Ethanol is a common electron donor for this process. The influence of environmental conditions on the stoichiometry and kinetics of ethanol-based chain elongation remains elusive. Here, a sequencing batch bioreactor setup with high-resolution off-gas measurements was used to identify the physiological characteristics of chain elongating microbial communities enriched on acetate and ethanol at pH 7.0 ± 0.2 and 5.5 ± 0.2. Operation at both pH-values led to the development of communities that were highly enriched (&gt;50%, based on 16S rRNA gene amplicon sequencing) in Clostridium kluyveri related species. At both pH-values, stably performing cultures were characterized by incomplete substrate conversion and decreasing biomass-specific hydrogen production rates during an operational cycle. The process stoichiometries obtained at both pH-values were different: at pH 7.0, 71 ± 6% of the consumed electrons were converted to caproate, compared to only 30 ± 5% at pH 5.5. Operating at pH 5.5 led to a decrease in the biomass yield, but a significant increase in the biomass-specific substrate uptake rate, suggesting that the organisms employ catabolic overcapacity to deal with energy losses associated to product inhibition. These results highlight that chain elongating conversions rely on a delicate balance between substrate uptake- and product inhibition kinetics.


2021 ◽  
Author(s):  
Katri Korpela ◽  
Roosa Jokela ◽  
Ching Jian ◽  
Evgenia Dikareva ◽  
Anne Nikkonen ◽  
...  

Background and aims Caesarean section (CS)-birth and maternally administered intrapartum antibiotics (IP) affect colonization of the neonate. We compared the effects of CS delivery and IP antibiotics on infant gut microbiota development and wellbeing over the first year. To understand the developing community dynamics, we focused on absolute bacterial abundance estimates over relative abundances. Methods We studied 144 healthy infants born between gestational weeks 37-42 vaginally without antibiotics (N=58), with IP penicillin (N=25) or cephalosporin (N=13), or by CS with IP cephalosporin (N=34) or other antibiotics (N=14). Gut microbiota composition and temporal development was analysed at 5-7 time points during the first year of life using 16S rRNA gene amplicon sequencing, complemented with qPCR to obtain absolute abundance estimates in 92 infants. A mediation analysis was carried out to identify taxa linked to gastrointestinal function and discomfort (crying, defecation frequency and signs of gastrointestinal symptoms) and birth interventions. Results Based on absolute abundance estimates, depletion of Bacteroides spp. was specific to CS birth while decreased bifidobacteria and increased Bacilli were common to CS birth and exposure to IP antibiotics in vaginal delivery. Abundance of numerous taxa differed between the birth modes among cephalosporin-exposed infants. Penicillin had a milder impact on the infant gut microbiota than cephalosporin. The effects of both CS birth and IP antibiotics on infant gut microbiota associated with increased gastrointestinal symptoms during the first months. Conclusion CS birth and maternal IP antibiotics have both specific and overlapping effects on infant gut microbiota development. The resulting microbiota deviations were found to associate with gastrointestinal symptoms in infancy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Annika Vaksmaa ◽  
Katrin Knittel ◽  
Alejandro Abdala Asbun ◽  
Maaike Goudriaan ◽  
Andreas Ellrott ◽  
...  

Plastic particles in the ocean are typically covered with microbial biofilms, but it remains unclear whether distinct microbial communities colonize different polymer types. In this study, we analyzed microbial communities forming biofilms on floating microplastics in a bay of the island of Elba in the Mediterranean Sea. Raman spectroscopy revealed that the plastic particles mainly comprised polyethylene (PE), polypropylene (PP), and polystyrene (PS) of which polyethylene and polypropylene particles were typically brittle and featured cracks. Fluorescence in situ hybridization and imaging by high-resolution microscopy revealed dense microbial biofilms on the polymer surfaces. Amplicon sequencing of the 16S rRNA gene showed that the bacterial communities on all plastic types consisted mainly of the orders Flavobacteriales, Rhodobacterales, Cytophagales, Rickettsiales, Alteromonadales, Chitinophagales, and Oceanospirillales. We found significant differences in the biofilm community composition on PE compared with PP and PS (on OTU and order level), which shows that different microbial communities colonize specific polymer types. Furthermore, the sequencing data also revealed a higher relative abundance of archaeal sequences on PS in comparison with PE or PP. We furthermore found a high occurrence, up to 17% of all sequences, of different hydrocarbon-degrading bacteria on all investigated plastic types. However, their functioning in the plastic-associated biofilm and potential role in plastic degradation needs further assessment.


2020 ◽  
Vol 21 (6) ◽  
pp. 1001-1010 ◽  
Author(s):  
Kathrin Busch ◽  
Lindsay Beazley ◽  
Ellen Kenchington ◽  
Frederick Whoriskey ◽  
Beate M. Slaby ◽  
...  

Abstract Establishment of adequate conservation areas represents a challenging but crucial task in the conservation of genetic diversity and biological variability. Anthropogenic pressures on marine ecosystems and organisms are steadily increasing. Whether and to what extent these pressures influence marine genetic biodiversity is only starting to be revealed. Using 16S rRNA gene amplicon sequencing, we analysed the microbial community structure of 33 individuals of the habitat-forming glass sponge Vazella pourtalesii, as well as reference seawater, sediment, and biofilm samples. We assessed how two anthropogenic impacts, i.e. habitat destruction by trawling and artificial substrate provision (moorings made of composite plastic), correspond with in situ V. pourtalesii microbiome variability. In addition, we evaluated the role of two bottom fishery closures in preserving sponge-associated microbial diversity on the Scotian Shelf, Canada. Our results illustrate that V. pourtalesii sponges collected from protected sites within fishery closures contained distinct and taxonomically largely novel microbial communities. At the trawled site we recorded significant quantitative differences in distinct microbial phyla, such as a reduction in Nitrospinae in the four sponges from this site and the environmental references. Individuals of V. pourtalesii growing on the mooring were significantly enriched in Bacteroidetes, Verrucomicrobia and Cyanobacteria in comparison to sponge individuals growing on the natural seabed. Due to a concomitant enrichment of these taxa in the mooring biofilm, we propose that biofilms on artificial substrates may ‘prime’ sponge-associated microbial communities when small sponges settle on such substrates. These observations likely have relevant management implications when considering the increase of artificial substrates in the marine environment, e.g., marine litter, off-shore wind parks, and petroleum platforms.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Ya Wang ◽  
Yan Yan ◽  
Kelsey N. Thompson ◽  
Sena Bae ◽  
Emma K. Accorsi ◽  
...  

Abstract Background High-throughput sequencing provides a powerful window into the structural and functional profiling of microbial communities, but it is unable to characterize only the viable portion of microbial communities at scale. There is as yet not one best solution to this problem. Previous studies have established viability assessments using propidium monoazide (PMA) treatment coupled with downstream molecular profiling (e.g., qPCR or sequencing). While these studies have met with moderate success, most of them focused on the resulting “viable” communities without systematic evaluations of the technique. Here, we present our work to rigorously benchmark “PMA-seq” (PMA treatment followed by 16S rRNA gene amplicon sequencing) for viability assessment in synthetic and realistic microbial communities. Results PMA-seq was able to successfully reconstruct simple synthetic communities comprising viable/heat-killed Escherichia coli and Streptococcus sanguinis. However, in realistically complex communities (computer screens, computer mice, soil, and human saliva) with E. coli spike-in controls, PMA-seq did not accurately quantify viability (even relative to variability in amplicon sequencing), with its performance largely affected by community properties such as initial biomass, sample types, and compositional diversity. We then applied this technique to environmental swabs from the Boston subway system. Several taxa differed significantly after PMA treatment, while not all microorganisms responded consistently. To elucidate the “PMA-responsive” microbes, we compared our results with previous PMA-based studies and found that PMA responsiveness varied widely when microbes were sourced from different ecosystems but were reproducible within similar environments across studies. Conclusions This study provides a comprehensive evaluation of PMA-seq exploring its quantitative potential in synthetic and complex microbial communities, where the technique was effective for semi-quantitative purposes in simple synthetic communities but provided only qualitative assessments in realistically complex community samples.


2021 ◽  
Vol 232 (1) ◽  
Author(s):  
Yazeed Abdelmageed ◽  
Carrie Miller ◽  
Carrie Sanders ◽  
Timothy Egbo ◽  
Alexander Johs ◽  
...  

AbstractIn nature, the bioaccumulative potent neurotoxin methylmercury (MeHg) is produced from inorganic mercury (Hg) predominantly by anaerobic microorganisms. Hg-contaminated soils are a potential source of MeHg due to microbial activity. We examine streambank soils collected from the contaminated East Fork Poplar Creek (EFPC) in Tennessee, USA, where seasonal variations in MeHg levels have been observed throughout the year, suggesting active microbial Hg methylation. In this study, we characterized the microbial community in contaminated bank soil samples collected from two locations over a period of one year and compared the results to soil samples from an uncontaminated reference site with similar geochemistry (n = 12). Microbial community composition and diversity were assessed by 16S rRNA gene amplicon sequencing. Furthermore, to isolate potential methylators from soils, enrichment cultures were prepared using selective media. A set of three clade-specific primers targeting the gene hgcA were used to detect Hg methylators among the δ-Proteobacteria in EFPC bank soils across all seasons. Two families among the δ-Proteobacteria that have been previously associated with Hg methylation, Geobacteraceae and Syntrophobacteraceae, were found to be predominant with relative abundances of 0.13% and 4.0%, respectively. However, in soil enrichment cultures, Firmicutes were predominant among families associated with Hg methylation. Specifically, Clostridiaceae and Peptococcaceae and their genera Clostridium and Desulfosporosinus were among the ten most abundant genera with relative abundances of 2.6% and 1.7%, respectively. These results offer insights into the role of microbial communities on Hg transformation processes in contaminated bank soils in EFPC. Identifying the biogeochemical drivers of MeHg production is critical for future remediation efforts.


Sign in / Sign up

Export Citation Format

Share Document