scholarly journals Straightforward clustering of single-cell RNA-Seq data with t-SNE and DBSCAN

2019 ◽  
Author(s):  
Florian Wagner

AbstractClustering of cells by cell type is arguably the most common and repetitive task encountered during the analysis of single-cell RNA-Seq data. However, as popular clustering methods operate largely independently of visualization techniques, the fine-tuning of clustering parameters can be unintuitive and time-consuming. Here, I propose Galapagos, a simple and effective clustering workflow based on t-SNE and DBSCAN that does not require a gene selection step. In practice, Galapagos only involves the fine-tuning of two parameters, which is straightforward, as clustering is performed directly on the t-SNE visualization results. Using peripheral blood mononuclear cells as a model tissue, I validate the effectiveness of Galapagos in different ways. First, I show that Galapagos generates clusters corresponding to all main cell types present. Then, I demonstrate that the t-SNE results are robust to parameter choices and initialization points. Next, I employ a simulation approach to show that clustering with Galapagos is accurate and robust to the high levels of technical noise present. Finally, to demonstrate Galapagos’ accuracy on real data, I compare clustering results to true cell type identities established using CITE-Seq data. In this context, I also provide an example of the primary limitation of Galapagos, namely the difficulty to resolve related cell types in cases where t-SNE fails to clearly separate the cells. Galapagos helps to make clustering scRNA-Seq data more intuitive and reproducible, and can be implemented in most programming languages with only a few lines of code.

2021 ◽  
Vol 12 ◽  
Author(s):  
Zhe Cui ◽  
Ya Cui ◽  
Yan Gao ◽  
Tao Jiang ◽  
Tianyi Zang ◽  
...  

Single-cell Assay Transposase Accessible Chromatin sequencing (scATAC-seq) has been widely used in profiling genome-wide chromatin accessibility in thousands of individual cells. However, compared with single-cell RNA-seq, the peaks of scATAC-seq are much sparser due to the lower copy numbers (diploid in humans) and the inherent missing signals, which makes it more challenging to classify cell type based on specific expressed gene or other canonical markers. Here, we present svmATAC, a support vector machine (SVM)-based method for accurately identifying cell types in scATAC-seq datasets by enhancing peak signal strength and imputing signals through patterns of co-accessibility. We applied svmATAC to several scATAC-seq data from human immune cells, human hematopoietic system cells, and peripheral blood mononuclear cells. The benchmark results showed that svmATAC is free of literature-based markers and robust across datasets in different libraries and platforms. The source code of svmATAC is available at https://github.com/mrcuizhe/svmATAC under the MIT license.


Author(s):  
Ting Luo ◽  
Fengping Zheng ◽  
Kang Wang ◽  
Yong Xu ◽  
Huixuan Xu ◽  
...  

Abstract Background Immune aberrations in end-stage renal disease (ESRD) are characterized by systemic inflammation and immune deficiency. The mechanistic understanding of this phenomenon remains limited. Methods We generated 12 981 and 9578 single-cell transcriptomes of peripheral blood mononuclear cells (PBMCs) that were pooled from 10 healthy volunteers and 10 patients with ESRD by single-cell RNA sequencing. Unsupervised clustering and annotation analyses were performed to cluster and identify cell types. The analysis of hallmark pathway and regulon activity was performed in the main cell types. Results We identified 14 leukocytic clusters that corresponded to six known PBMC types. The comparison of cells from ESRD patients and healthy individuals revealed multiple changes in biological processes. We noticed an ESRD-related increase in inflammation response, complement cascade and cellular metabolism, as well as a strong decrease in activity related to cell cycle progression in relevant cell types in ESRD. Furthermore, a list of cell type-specific candidate transcription factors (TFs) driving the ESRD-associated transcriptome changes was identified. Conclusions We generated a distinctive, high-resolution map of ESRD-derived PBMCs. These results revealed cell type-specific ESRD-associated pathways and TFs. Notably, the pooled sample analysis limits the generalization of our results. The generation of larger single-cell datasets will complement the current map and drive advances in therapies that manipulate immune cell function in ESRD.


2019 ◽  
Author(s):  
Ralph Patrick ◽  
David T. Humphreys ◽  
Vaibhao Janbandhu ◽  
Alicia Oshlack ◽  
Joshua W.K. Ho ◽  
...  

AbstractHigh-throughput single-cell RNA-seq (scRNA-seq) is a powerful tool for studying gene expression in single cells. Most current scRNA-seq bioinformatics tools focus on analysing overall expression levels, largely ignoring alternative mRNA isoform expression. We present a computational pipeline, Sierra, that readily detects differential transcript usage from data generated by commonly used polyA-captured scRNA-seq technology. We validate Sierra by comparing cardiac scRNA-seq cell-types to bulk RNA-seq of matched populations, finding significant overlap in differential transcripts. Sierra detects differential transcript usage across human peripheral blood mononuclear cells and the Tabula Muris, and 3’UTR shortening in cardiac fibroblasts. Sierra is available at https://github.com/VCCRI/Sierra.


Author(s):  
Hananeh Aliee ◽  
Fabian Theis

AbstractTissues are complex systems of interacting cell types. Knowing cell-type proportions in a tissue is very important to identify which cells or cell types are targeted by a disease or perturbation. When measuring such responses using RNA-seq, bulk RNA-seq masks cellular heterogeneity. Hence, several computational methods have been proposed to infer cell-type proportions from bulk RNA samples. Their performance with noisy reference profiles highly depends on the set of genes undergoing deconvolution. These genes are often selected based on prior knowledge or a single-criterion test that might not be useful to dissect closely correlated cell types. In this work, we introduce AutoGeneS, a tool that automatically extracts informative genes and reveals the cellular heterogeneity of bulk RNA samples. AutoGeneS requires no prior knowledge about marker genes and selects genes by simultaneously optimizing multiple criteria: minimizing the correlation and maximizing the distance between cell types. It can be applied to reference profiles from various sources like single-cell experiments or sorted cell populations. Results from human samples of peripheral blood illustrate that AutoGeneS outperforms other methods. Our results also highlight the impact of our approach on analyzing bulk RNA samples with noisy single-cell reference profiles and closely correlated cell types. Ground truth cell proportions analyzed by flow cytometry confirmed the accuracy of the predictions of AutoGeneS in identifying cell-type proportions. AutoGeneS is available for use via a standalone Python package (https://github.com/theislab/AutoGeneS).


2021 ◽  
Vol 17 (11) ◽  
pp. e1009548
Author(s):  
Qunlun Shen ◽  
Shihua Zhang

With the rapid accumulation of biological omics datasets, decoding the underlying relationships of cross-dataset genes becomes an important issue. Previous studies have attempted to identify differentially expressed genes across datasets. However, it is hard for them to detect interrelated ones. Moreover, existing correlation-based algorithms can only measure the relationship between genes within a single dataset or two multi-modal datasets from the same samples. It is still unclear how to quantify the strength of association of the same gene across two biological datasets with different samples. To this end, we propose Approximate Distance Correlation (ADC) to select interrelated genes with statistical significance across two different biological datasets. ADC first obtains the k most correlated genes for each target gene as its approximate observations, and then calculates the distance correlation (DC) for the target gene across two datasets. ADC repeats this process for all genes and then performs the Benjamini-Hochberg adjustment to control the false discovery rate. We demonstrate the effectiveness of ADC with simulation data and four real applications to select highly interrelated genes across two datasets. These four applications including 21 cancer RNA-seq datasets of different tissues; six single-cell RNA-seq (scRNA-seq) datasets of mouse hematopoietic cells across six different cell types along the hematopoietic cell lineage; five scRNA-seq datasets of pancreatic islet cells across five different technologies; coupled single-cell ATAC-seq (scATAC-seq) and scRNA-seq data of peripheral blood mononuclear cells (PBMC). Extensive results demonstrate that ADC is a powerful tool to uncover interrelated genes with strong biological implications and is scalable to large-scale datasets. Moreover, the number of such genes can serve as a metric to measure the similarity between two datasets, which could characterize the relative difference of diverse cell types and technologies.


2020 ◽  
Author(s):  
Mohit Goyal ◽  
Guillermo Serrano ◽  
Ilan Shomorony ◽  
Mikel Hernaez ◽  
Idoia Ochoa

AbstractSingle-cell RNA-seq is a powerful tool in the study of the cellular composition of different tissues and organisms. A key step in the analysis pipeline is the annotation of cell-types based on the expression of specific marker genes. Since manual annotation is labor-intensive and does not scale to large datasets, several methods for automated cell-type annotation have been proposed based on supervised learning. However, these methods generally require feature extraction and batch alignment prior to classification, and their performance may become unreliable in the presence of cell-types with very similar transcriptomic profiles, such as differentiating cells. We propose JIND, a framework for automated cell-type identification based on neural networks that directly learns a low-dimensional representation (latent code) in which cell-types can be reliably determined. To account for batch effects, JIND performs a novel asymmetric alignment in which the transcriptomic profile of unseen cells is mapped onto the previously learned latent space, hence avoiding the need of retraining the model whenever a new dataset becomes available. JIND also learns cell-type-specific confidence thresholds to identify and reject cells that cannot be reliably classified. We show on datasets with and without batch effects that JIND classifies cells more accurately than previously proposed methods while rejecting only a small proportion of cells. Moreover, JIND batch alignment is parallelizable, being more than five or six times faster than Seurat integration. Availability: https://github.com/mohit1997/JIND.


2021 ◽  
Author(s):  
Zhibin Li ◽  
chengcheng Sun ◽  
Fei Wang ◽  
Xiran Wang ◽  
Jiacheng Zhu ◽  
...  

Background: Immune cells play important roles in mediating immune response and host defense against invading pathogens. However, insights into the molecular mechanisms governing circulating immune cell diversity among multiple species are limited. Methods: In this study, we compared the single-cell transcriptomes of 77 957 immune cells from 12 species using single-cell RNA-sequencing (scRNA-seq). Distinct molecular profiles were characterized for different immune cell types, including T cells, B cells, natural killer cells, monocytes, and dendritic cells. Results: The results revealed the heterogeneity and compositions of circulating immune cells among 12 different species. Additionally, we explored the conserved and divergent cellular cross-talks and genetic regulatory networks among vertebrate immune cells. Notably, the ligand and receptor pair VIM-CD44 was highly conserved among the immune cells. Conclusions: This study is the first to provide a comprehensive analysis of the cross-species single-cell atlas for peripheral blood mononuclear cells (PBMCs). This research should advance our understanding of the cellular taxonomy and fundamental functions of PBMCs, with important implications in evolutionary biology, developmental biology, and immune system disorders


2019 ◽  
Author(s):  
Matthew N. Bernstein ◽  
Zhongjie Ma ◽  
Michael Gleicher ◽  
Colin N. Dewey

SummaryCell type annotation is a fundamental task in the analysis of single-cell RNA-sequencing data. In this work, we present CellO, a machine learning-based tool for annotating human RNA-seq data with the Cell Ontology. CellO enables accurate and standardized cell type classification by considering the rich hierarchical structure of known cell types, a source of prior knowledge that is not utilized by existing methods. Furthemore, CellO comes pre-trained on a novel, comprehensive dataset of human, healthy, untreated primary samples in the Sequence Read Archive, which to the best of our knowledge, is the most diverse curated collection of primary cell data to date. CellO’s comprehensive training set enables it to run out-of-the-box on diverse cell types and achieves superior or competitive performance when compared to existing state-of-the-art methods. Lastly, CellO’s linear models are easily interpreted, thereby enabling exploration of cell type-specific expression signatures across the ontology. To this end, we also present the CellO Viewer: a web application for exploring CellO’s models across the ontology.HighlightWe present CellO, a tool for hierarchically classifying cell type from single-cell RNA-seq data against the graph-structured Cell OntologyCellO is pre-trained on a comprehensive dataset comprising nearly all bulk RNA-seq primary cell samples in the Sequence Read ArchiveCellO achieves superior or comparable performance with existing methods while featuring a more comprehensive pre-packaged training setCellO is built with easily interpretable models which we expose through a novel web application, the CellO Viewer, for exploring cell type-specific signatures across the Cell OntologyGraphical Abstract


2021 ◽  
Vol 12 ◽  
Author(s):  
Yuan Zhao ◽  
Zhao-Yu Fang ◽  
Cui-Xiang Lin ◽  
Chao Deng ◽  
Yun-Pei Xu ◽  
...  

In recent years, the application of single cell RNA-seq (scRNA-seq) has become more and more popular in fields such as biology and medical research. Analyzing scRNA-seq data can discover complex cell populations and infer single-cell trajectories in cell development. Clustering is one of the most important methods to analyze scRNA-seq data. In this paper, we focus on improving scRNA-seq clustering through gene selection, which also reduces the dimensionality of scRNA-seq data. Studies have shown that gene selection for scRNA-seq data can improve clustering accuracy. Therefore, it is important to select genes with cell type specificity. Gene selection not only helps to reduce the dimensionality of scRNA-seq data, but also can improve cell type identification in combination with clustering methods. Here, we proposed RFCell, a supervised gene selection method, which is based on permutation and random forest classification. We first use RFCell and three existing gene selection methods to select gene sets on 10 scRNA-seq data sets. Then, three classical clustering algorithms are used to cluster the cells obtained by these gene selection methods. We found that the gene selection performance of RFCell was better than other gene selection methods.


2021 ◽  
Author(s):  
Zhengyu Ouyang ◽  
Nathanael Bourgeois ◽  
Eugenia Lyashenko ◽  
Paige Cundiff ◽  
Patrick F Cullen ◽  
...  

Induced pluripotent stem cell (iPSC) derived cell types are increasingly employed as in vitro model systems for drug discovery. For these studies to be meaningful, it is important to understand the reproducibility of the iPSC-derived cultures and their similarity to equivalent endogenous cell types. Single-cell and single-nucleus RNA sequencing (RNA-seq) are useful to gain such understanding, but they are expensive and time consuming, while bulk RNA-seq data can be generated quicker and at lower cost. In silico cell type decomposition is an efficient, inexpensive, and convenient alternative that can leverage bulk RNA-seq to derive more fine-grained information about these cultures. We developed CellMap, a computational tool that derives cell type profiles from publicly available single-cell and single-nucleus datasets to infer cell types in bulk RNA-seq data from iPSC-derived cell lines.


Sign in / Sign up

Export Citation Format

Share Document