A single-cell map for the transcriptomic signatures of peripheral blood mononuclear cells in end-stage renal disease

Author(s):  
Ting Luo ◽  
Fengping Zheng ◽  
Kang Wang ◽  
Yong Xu ◽  
Huixuan Xu ◽  
...  

Abstract Background Immune aberrations in end-stage renal disease (ESRD) are characterized by systemic inflammation and immune deficiency. The mechanistic understanding of this phenomenon remains limited. Methods We generated 12 981 and 9578 single-cell transcriptomes of peripheral blood mononuclear cells (PBMCs) that were pooled from 10 healthy volunteers and 10 patients with ESRD by single-cell RNA sequencing. Unsupervised clustering and annotation analyses were performed to cluster and identify cell types. The analysis of hallmark pathway and regulon activity was performed in the main cell types. Results We identified 14 leukocytic clusters that corresponded to six known PBMC types. The comparison of cells from ESRD patients and healthy individuals revealed multiple changes in biological processes. We noticed an ESRD-related increase in inflammation response, complement cascade and cellular metabolism, as well as a strong decrease in activity related to cell cycle progression in relevant cell types in ESRD. Furthermore, a list of cell type-specific candidate transcription factors (TFs) driving the ESRD-associated transcriptome changes was identified. Conclusions We generated a distinctive, high-resolution map of ESRD-derived PBMCs. These results revealed cell type-specific ESRD-associated pathways and TFs. Notably, the pooled sample analysis limits the generalization of our results. The generation of larger single-cell datasets will complement the current map and drive advances in therapies that manipulate immune cell function in ESRD.

2021 ◽  
Vol 12 ◽  
Author(s):  
Zhe Cui ◽  
Ya Cui ◽  
Yan Gao ◽  
Tao Jiang ◽  
Tianyi Zang ◽  
...  

Single-cell Assay Transposase Accessible Chromatin sequencing (scATAC-seq) has been widely used in profiling genome-wide chromatin accessibility in thousands of individual cells. However, compared with single-cell RNA-seq, the peaks of scATAC-seq are much sparser due to the lower copy numbers (diploid in humans) and the inherent missing signals, which makes it more challenging to classify cell type based on specific expressed gene or other canonical markers. Here, we present svmATAC, a support vector machine (SVM)-based method for accurately identifying cell types in scATAC-seq datasets by enhancing peak signal strength and imputing signals through patterns of co-accessibility. We applied svmATAC to several scATAC-seq data from human immune cells, human hematopoietic system cells, and peripheral blood mononuclear cells. The benchmark results showed that svmATAC is free of literature-based markers and robust across datasets in different libraries and platforms. The source code of svmATAC is available at https://github.com/mrcuizhe/svmATAC under the MIT license.


2021 ◽  
Author(s):  
Michael Hagemann-Jensen ◽  
Christoph Ziegenhain ◽  
Rickard Sandberg

Plate-based single-cell RNA-sequencing methods with full-transcript coverage typically excel at sensitivity but are more resource and time-consuming. Here, we miniaturized and streamlined the Smart-seq3 protocol for drastically reduced cost and increased throughput. Applying Smart-seq3xpress to 16,349 human peripheral blood mononuclear cells revealed a highly granular atlas complete with both common and rare cell types whose identification previously relied on additional protein measurements or the integration with a reference atlas.


2019 ◽  
Author(s):  
Florian Wagner

AbstractClustering of cells by cell type is arguably the most common and repetitive task encountered during the analysis of single-cell RNA-Seq data. However, as popular clustering methods operate largely independently of visualization techniques, the fine-tuning of clustering parameters can be unintuitive and time-consuming. Here, I propose Galapagos, a simple and effective clustering workflow based on t-SNE and DBSCAN that does not require a gene selection step. In practice, Galapagos only involves the fine-tuning of two parameters, which is straightforward, as clustering is performed directly on the t-SNE visualization results. Using peripheral blood mononuclear cells as a model tissue, I validate the effectiveness of Galapagos in different ways. First, I show that Galapagos generates clusters corresponding to all main cell types present. Then, I demonstrate that the t-SNE results are robust to parameter choices and initialization points. Next, I employ a simulation approach to show that clustering with Galapagos is accurate and robust to the high levels of technical noise present. Finally, to demonstrate Galapagos’ accuracy on real data, I compare clustering results to true cell type identities established using CITE-Seq data. In this context, I also provide an example of the primary limitation of Galapagos, namely the difficulty to resolve related cell types in cases where t-SNE fails to clearly separate the cells. Galapagos helps to make clustering scRNA-Seq data more intuitive and reproducible, and can be implemented in most programming languages with only a few lines of code.


2017 ◽  
Author(s):  
M.G.P. van der Wijst ◽  
H. Brugge ◽  
D.H. de Vries ◽  
L.H. Franke

AbstractMost disease-associated genetic risk factors are regulatory. Here, we generated single-cell RNA-seq data of ∼25,000 peripheral blood mononuclear cells from 45 donors to identify how genetic variants affect gene expression. We validated this approach by replicating previously published whole blood RNA-seq cis-expression quantitative trait loci effects (cis-eQTLs), but also identified new cell type-specific cis-eQTLs. These eQTLs give additional insight into the downstream consequences of genetic risk factors for immune-mediated diseases.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ailu Chen ◽  
Maria P. Diaz-Soto ◽  
Miguel F. Sanmamed ◽  
Taylor Adams ◽  
Jonas C. Schupp ◽  
...  

Abstract Background Asthma has been associated with impaired interferon response. Multiple cell types have been implicated in such response impairment and may be responsible for asthma immunopathology. However, existing models to study the immune response in asthma are limited by bulk profiling of cells. Our objective was to Characterize a model of peripheral blood mononuclear cells (PBMCs) of patients with severe asthma (SA) and its response to the TLR3 agonist Poly I:C using two single-cell methods. Methods Two complementary single-cell methods, DropSeq for single-cell RNA sequencing (scRNA-Seq) and mass cytometry (CyTOF), were used to profile PBMCs of SA patients and healthy controls (HC). Poly I:C-stimulated and unstimulated cells were analyzed in this study. Results PBMCs (n = 9414) from five SA (n = 6099) and three HC (n = 3315) were profiled using scRNA-Seq. Six main cell subsets, namely CD4 + T cells, CD8 + T cells, natural killer (NK) cells, B cells, dendritic cells (DCs), and monocytes, were identified. CD4 + T cells were the main cell type in SA and demonstrated a pro-inflammatory profile characterized by increased JAK1 expression. Following Poly I:C stimulation, PBMCs from SA had a robust induction of interferon pathways compared with HC. CyTOF profiling of Poly I:C stimulated and unstimulated PBMCs (n = 160,000) from the same individuals (SA = 5; HC = 3) demonstrated higher CD8 + and CD8 + effector T cells in SA at baseline, followed by a decrease of CD8 + effector T cells after poly I:C stimulation. Conclusions Single-cell profiling of an in vitro model using PBMCs in patients with SA identified activation of pro-inflammatory pathways at baseline and strong response to Poly I:C, as well as quantitative changes in CD8 + effector cells. Thus, transcriptomic and cell quantitative changes are associated with immune cell heterogeneity in this model to evaluate interferon responses in severe asthma.


2021 ◽  
Author(s):  
Cantong Zhang ◽  
Xiaoping Hong ◽  
Haiyan Yu ◽  
Hongwei Wu ◽  
Huixuan Xu ◽  
...  

Abstract Rheumatoid arthritis is a chronic autoinflammatory disease with an elusive etiology. Assays for transposase-accessible chromatin with single-cell sequencing (scATAC-seq) contribute to the progress in epigenetic studies. However, the impact of epigenetic technology on autoimmune diseases has not been objectively analyzed. Therefore, scATAC-seq was performed to generate a high-resolution map of accessible loci in peripheral blood mononuclear cells (PBMCs) of RA patients at the single-cell level. The purpose of our project was to discover the transcription factors (TFs) that were involved in the pathogenesis of RA at single-cell resolution. In our research, we obtained 22 accessible chromatin patterns. Then, 10 key TFs were involved in the RA pathogenesis by regulating the activity of MAP kinase. Consequently, two genes (PTPRC, SPAG9) regulated by 10 key TFs were found that may be associated with RA disease pathogenesis and these TFs were obviously enriched in RA patients (p<0.05, FC>1.2). With further qPCR validation on PTPRC and SPAG9 in monocytes, we found differential expression of these two genes, which were regulated by eight TFs (ZNF384, HNF1B, DMRTA2, MEF2A, NFE2L1, CREB3L4 (var. 2), FOSL2::JUNB (var. 2), MEF2B). What is more, the eight TFs showed highly accessible binding sites in RA patients. These findings demonstrate the value of using scATAC-seq to reveal transcriptional regulatory variation in RA-derived PBMCs, providing insights on therapy from an epigenetic perspective.


2020 ◽  
Author(s):  
Mohit Goyal ◽  
Guillermo Serrano ◽  
Ilan Shomorony ◽  
Mikel Hernaez ◽  
Idoia Ochoa

AbstractSingle-cell RNA-seq is a powerful tool in the study of the cellular composition of different tissues and organisms. A key step in the analysis pipeline is the annotation of cell-types based on the expression of specific marker genes. Since manual annotation is labor-intensive and does not scale to large datasets, several methods for automated cell-type annotation have been proposed based on supervised learning. However, these methods generally require feature extraction and batch alignment prior to classification, and their performance may become unreliable in the presence of cell-types with very similar transcriptomic profiles, such as differentiating cells. We propose JIND, a framework for automated cell-type identification based on neural networks that directly learns a low-dimensional representation (latent code) in which cell-types can be reliably determined. To account for batch effects, JIND performs a novel asymmetric alignment in which the transcriptomic profile of unseen cells is mapped onto the previously learned latent space, hence avoiding the need of retraining the model whenever a new dataset becomes available. JIND also learns cell-type-specific confidence thresholds to identify and reject cells that cannot be reliably classified. We show on datasets with and without batch effects that JIND classifies cells more accurately than previously proposed methods while rejecting only a small proportion of cells. Moreover, JIND batch alignment is parallelizable, being more than five or six times faster than Seurat integration. Availability: https://github.com/mohit1997/JIND.


Sign in / Sign up

Export Citation Format

Share Document