scholarly journals Coiled-coil registry shifts in the F684I mutant of Bicaudal result in cargo-independent activation of dynein motility

2019 ◽  
Author(s):  
Heying Cui ◽  
Kathleen M. Trybus ◽  
M. Yusuf Ali ◽  
Puja Goyal ◽  
Kaiqi Zhang ◽  
...  

ABSTRACTThe dynein adaptor Drosophila Bicaudal D (BicD) is auto-inhibited and activates dynein motility only after cargo is bound, but the underlying mechanism is elusive. In contrast, we show that the full-length BicD/F684I mutant activates dynein processivity even in the absence of cargo. Our X-ray structure of the C-terminal domain of the BicD/F684I mutant reveals a coiled-coil registry shift; in the N-terminal region, the two helices of the homodimer are aligned, whereas they are vertically shifted in the wild-type. One chain is partially disordered and this structural flexibility is confirmed by computations, which reveal that the mutant transitions back and forth between the two registries. We propose that a coiled-coil registry shift upon cargo binding activates BicD for dynein recruitment. Moreover, the human homolog BicD2/F743I exhibits diminished binding of cargo adaptor Nup358, implying that a coiled-coil registry shift may be a mechanism to modulate cargo selection for BicD2–dependent transport pathways.

Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 618
Author(s):  
Yue Jin ◽  
Shihao Li ◽  
Yang Yu ◽  
Chengsong Zhang ◽  
Xiaojun Zhang ◽  
...  

A mutant of the ridgetail white prawn, which exhibited rare orange-red body color with a higher level of free astaxanthin (ASTX) concentration than that in the wild-type prawn, was obtained in our lab. In order to understand the underlying mechanism for the existence of a high level of free astaxanthin, transcriptome analysis was performed to identify the differentially expressed genes (DEGs) between the mutant and wild-type prawns. A total of 78,224 unigenes were obtained, and 1863 were identified as DEGs, in which 902 unigenes showed higher expression levels, while 961 unigenes presented lower expression levels in the mutant in comparison with the wild-type prawns. Based on Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes analysis, as well as further investigation of annotated DEGs, we found that the biological processes related to astaxanthin binding, transport, and metabolism presented significant differences between the mutant and the wild-type prawns. Some genes related to these processes, including crustacyanin, apolipoprotein D (ApoD), cathepsin, and cuticle proteins, were identified as DEGs between the two types of prawns. These data may provide important information for us to understand the molecular mechanism of the existence of a high level of free astaxanthin in the prawn.


2019 ◽  
Author(s):  
Crystal R. Noell ◽  
Jia Ying Loh ◽  
Erik W. Debler ◽  
Kyle M. Loftus ◽  
Heying Cui ◽  
...  

SUMMARYDynein adaptors such as Bicaudal D2 (BicD2) recognize cargo for dynein-dependent transport. BicD2-dependent transport pathways are important for brain and muscle development. Cargo-bound adaptors are required to activate dynein for processive transport, but the mechanism of action is elusive. Here, we report the structure of the cargo-binding domain of human BicD2 that forms a dimeric coiled-coil with homotypic registry, in which both helices are aligned. To investigate if BicD2 can switch to an asymmetric registry, where a portion of one helix is vertically shifted, we performed molecular dynamics simulations. Both registry types are stabilized by distinct conformations of F743. For the F743I variant, which increases dynein recruitment in the Drosophila homolog, and for the human R747C variant, which causes spinal muscular atrophy, spontaneous coiled-coil registry shifts are observed, which may cause the BicD2-hyperactivation phenotype and disease. We propose that a registry shift upon cargo-binding activates auto-inhibited BicD2 for dynein recruitment.HighlightsStable, bona fide BicD2 coiled-coils with distinct registries can be formed.We provide evidence that a human disease mutation causes a coiled-coil registry shift.A coiled-coil registry shift could relieve BicD2-autoinhibition upon cargo-binding.The ability to undergo registry shifts may be an inherent property of coiled-coils.In BriefOur results support that stable coiled-coils of BicD2 with distinct registries can be formed, and suggest a molecular mechanism for such registry switches. We provide evidence that disease-causing mutations in coiled-coils may alter the equilibrium between registry-shifted conformers, which we propose as a general mechanism of pathogenesis for coiled-coils.Graphical Abstract


1971 ◽  
Vol 17 (2) ◽  
pp. 95-101 ◽  
Author(s):  
W. R. Scowcroft ◽  
B. D. H. Latter

SUMMARYA major difference in developmental stability has been demonstrated between two populations produced by artificial selection for supernumerary scutellar bristles. The test system involves the substitution of an X-ray induced partial revertant of sc1 for the wild-type allele at the scute locus, enabling direct comparisons to be made of the degree of canalization at the wild-type level of expression of the character. One population is comparable with the unselected Canberra stock in stability, though it differs appreciably in mean bristle number: the other population shows a marked reduction in the level of regulation of bristle number variability. The alleles responsible for the reduced level of canalization are rare in the base population, and are of particular importance in the determination of limits to directional selection. Their effects on developmental stability have been shown to depend on the activity of the allele at the scute locus.


2014 ◽  
Vol 25 (15) ◽  
pp. 2272-2281 ◽  
Author(s):  
Benjamin Vitre ◽  
Nikita Gudimchuk ◽  
Ranier Borda ◽  
Yumi Kim ◽  
John E. Heuser ◽  
...  

Centromere protein E (CENP-E) is a highly elongated kinesin that transports pole-proximal chromosomes during congression in prometaphase. During metaphase, it facilitates kinetochore–microtubule end-on attachment required to achieve and maintain chromosome alignment. In vitro CENP-E can walk processively along microtubule tracks and follow both growing and shrinking microtubule plus ends. Neither the CENP-E–dependent transport along microtubules nor its tip-tracking activity requires the unusually long coiled-coil stalk of CENP-E. The biological role for the CENP-E stalk has now been identified through creation of “Bonsai” CENP-E with significantly shortened stalk but wild-type motor and tail domains. We demonstrate that Bonsai CENP-E fails to bind microtubules in vitro unless a cargo is contemporaneously bound via its C-terminal tail. In contrast, both full-length and truncated CENP-E that has no stalk and tail exhibit robust motility with and without cargo binding, highlighting the importance of CENP-E stalk for its activity. Correspondingly, kinetochore attachment to microtubule ends is shown to be disrupted in cells whose CENP-E has a shortened stalk, thereby producing chromosome misalignment in metaphase and lagging chromosomes during anaphase. Together these findings establish an unexpected role of CENP-E elongated stalk in ensuring stability of kinetochore–microtubule attachments during chromosome congression and segregation.


2011 ◽  
Vol 38 (3) ◽  
pp. 227
Author(s):  
Cunxu Wei ◽  
Peisong Xie ◽  
Yifang Chen ◽  
Huaguang Yu ◽  
Yanjing Su ◽  
...  

Brittleness culm is an important agronomic trait that has a potential usefulness in agricultural activity as animal forage. In the present study, the anatomy of culm of rice (Oryza sativa L.) brittle mutant bc7(t) was investigated with light microscopy and electron microscopy. Findings showed bc7(t) exhibited higher area percentages of mechanical and conducting tissues, and lower cell wall thickness of sclerenchyma cells. Chemical analyses and 13C CP/MAS NMR spectra of cell walls indicated that the content of cellulose decreased, and the contents of hemicellulose, lignin and silicon was increased in bc7(t). Lignin histochemical staining and cytochemical localisation revealed that the higher lignin was localised in epidermal, sclerenchyma and vascular bundle cells in bc7(t). The energy dispersive X-ray microanalysis showed that the contents of silicon were higher in bc7(t) than in the wild type. These results indicate that cellulose, hemicellulose, lignin, silicon and the area percentages of mechanical and conducting tissues could be regulated in a compensatory fashion, possibly contributing to metabolic flexibility and a growth advantage to sustain the bc7(t) normal growth habit like the wild-type plant.


2006 ◽  
Vol 188 (4) ◽  
pp. 1286-1294 ◽  
Author(s):  
Galyna I. Kufryk ◽  
Wim F. J. Vermaas

ABSTRACT A Synechocystis sp. strain PCC 6803 mutant lacking CtaI, a main subunit of cytochrome c oxidase, is not capable of growing at light intensities below 5 μmol photons m−2 s−1, presumably due to an overreduced plastoquinone pool in the thylakoid membrane. Upon selection for growth at light intensities below 5 μmol photons m−2 s−1, a secondary mutant was generated that retained the CtaI deletion and had fully assembled photosystem II complexes; in this secondary mutant (pseudorevertant), oxygen evolution and respiratory activities were similar to those in the wild type. Functional complementation of the original CtaI-less strain to low-light tolerance by transformation with restriction fragments of genomic DNA of the pseudorevertant and subsequent mapping of the pseudoreversion site showed that the point mutation led to a Ser186Cys substitution in Sll1717, a protein of as-yet-unknown function and with a predicted ATP/GTP-binding domain. This mutation caused a decrease in the plastoquinone pool reduction level of thylakoids compared to that observed for the wild type. Based on a variety of experimental evidence, the most plausible mechanism to cause this effect is an activation of plastoquinol oxidation in thylakoids by the quinol oxidase CydAB that occurs without upregulation of the corresponding gene and that may be caused by an increased CydAB activity in thylakoids, conceivably due to altered CydAB sorting between cytoplasmic and thylakoid membranes. Sll1717 appears to be unique to Synechocystis sp. strain PCC 6803 and has a close homologue encoded in the genome of this organism. The transcript level of sll1717 is low, which suggests that the corresponding protein is regulatory rather than structural.


2020 ◽  
Vol 76 (9) ◽  
pp. 834-844
Author(s):  
Yu Hirano ◽  
Kana Tsukamoto ◽  
Shingo Ariki ◽  
Yuki Naka ◽  
Mitsuhiro Ueda ◽  
...  

The earthworm Eisenia fetida possesses several cold-active enzymes, including α-amylase, β-glucanase and β-mannanase. E. fetida possesses two isoforms of α-amylase (Ef-Amy I and II) to digest raw starch. Ef-Amy I retains its catalytic activity at temperatures below 10°C. To identify the molecular properties of Ef-Amy I, X-ray crystal structures were determined of the wild type and of the inactive E249Q mutant. Ef-Amy I has structural similarities to mammalian α-amylases, including the porcine pancreatic and human pancreatic α-amylases. Structural comparisons of the overall structures as well as of the Ca2+-binding sites of Ef-Amy I and the mammalian α-amylases indicate that Ef-Amy I has increased structural flexibility and more solvent-exposed acidic residues. These structural features of Ef-Amy I may contribute to its observed catalytic activity at low temperatures, as many cold-adapted enzymes have similar structural properties. The structure of the substrate complex of the inactive mutant of Ef-Amy I shows that a maltohexaose molecule is bound in the active site and a maltotetraose molecule is bound in the cleft between the N- and C-terminal domains. The recognition of substrate molecules by Ef-Amy I exhibits some differences from that observed in structures of human pancreatic α-amylase. This result provides insights into the structural modulation of the recognition of substrates and inhibitors.


2018 ◽  
Author(s):  
Anne Richter ◽  
Theresa Hölscher ◽  
Patrick Pausch ◽  
Tim Sehrt ◽  
Franziska Brockhaus ◽  
...  

SummarySelection for a certain trait in microbes depends on the genetic background of the strain and the selection pressure of the environmental conditions acting on the cells. In contrast to the sessile state in the biofilm, various bacterial cells employ flagellum-dependent motility under planktonic conditions suggesting that the two phenotypes are mutually exclusive. However, flagellum dependent motility facilitates the prompt establishment of floating biofilms on the air-medium interface, called pellicles. Previously, pellicles of B. subtilis were shown to be preferably established by motile cells, causing a reduced fitness of non-motile derivatives in the presence of the wild type strain. Here, we show that lack of fully assembled flagella promotes the evolution of matrix overproducers that can be distinguished by the characteristic wrinkled colony morphotype. The wrinkly phenotype is associated with amino acid substitutions in the master repressor of biofilm-related genes, SinR. By analyzing one of the mutations, we show that it alters the tetramerization and DNA binding properties of SinR, allowing an increased expression of the operon responsible for exopolysaccharide production. Finally, we demonstrate that the wrinkly phenotype is advantageous when cells lack flagella, but not in the wild type background.Graphical AbstractAbbreviated SummaryDuring biofilm establishment at the air-liquid interface, Bacillus subtilis evolves matrix overproducers with a wrinkly colony phenotype (WS). This is caused by mutations in the regulator SinR which alter its dimerization and DNA interaction properties. The matrix overproducers appear mostly in a non-motile mutant where they possess a competitive advantage for biofilm formation, which is not present in the wild type background.


Author(s):  
Thecan Caesar-Ton That ◽  
Lynn Epstein

Nectria haematococca mating population I (anamorph, Fusarium solani) macroconidia attach to its host (squash) and non-host surfaces prior to germ tube emergence. The macroconidia become adhesive after a brief period of protein synthesis. Recently, Hickman et al. (1989) isolated N. haematococca adhesion-reduced mutants. Using freeze substitution, we compared the development of the macroconidial wall in the wild type in comparison to one of the mutants, LEI.Macroconidia were harvested at 1C, washed by centrifugation, resuspended in a dilute zucchini fruit extract and incubated from 0 - 5 h. During the incubation period, wild type macroconidia attached to uncoated dialysis tubing. Mutant macroconidia did not attach and were collected on poly-L-lysine coated dialysis tubing just prior to freezing. Conidia on the tubing were frozen in liquid propane at 191 - 193C, substituted in acetone with 2% OsO4 and 0.05% uranyl acetate, washed with acetone, and flat-embedded in Epon-Araldite. Using phase contrast microscopy at 1000X, cells without freeze damage were selected, remounted, sectioned and post-stained sequentially with 1% Ba(MnO4)2 2% uranyl acetate and Reynold’s lead citrate. At least 30 cells/treatment were examined.


2020 ◽  
Author(s):  
Pia Vervoorts ◽  
Stefan Burger ◽  
Karina Hemmer ◽  
Gregor Kieslich

The zeolitic imidazolate frameworks ZIF-8 and ZIF-67 harbour a series of fascinating stimuli responsive properties. Looking at their responsitivity to hydrostatic pressure as stimulus, open questions exist regarding the isotropic compression with non-penetrating pressure transmitting media. By applying a state-of-the-art high-pressure powder X-ray diffraction setup, we revisit the high-pressure behaviour of ZIF-8 and ZIF-67 up to <i>p</i> = 0.4 GPa in small pressure increments. We observe a drastic, reversible change of high-pressure powder X-ray diffraction data at <i>p</i> = 0.3 GPa, discovering large volume structural flexibility in ZIF-8 and ZIF-67. Our results imply a shallow underlying energy landscape in ZIF-8 and ZIF-67, an observation that might point at rich polymorphism of ZIF-8 and ZIF-67, similar to ZIF-4(Zn).<br>


Sign in / Sign up

Export Citation Format

Share Document