scholarly journals 3D Printed Microheater Sensor-Integrated, Drug-Encapsulated Microneedle Patch System for Pain Management

2019 ◽  
Author(s):  
Mengtian Yin ◽  
Li Xiao ◽  
Qingchang Liu ◽  
Sung-Yun Kwon ◽  
Yi Zhang ◽  
...  

AbstractMicroneedle patch device has been widely utilized for transdermal drug delivery in pain management, but is challenged by accurate control of drug release and subsequent diffusion to human body. The recent emerging wearable electronics that could be integrated with microneedle devices offers a facile approach to address such a challenge. Here a 3D printed microheater integrated drug-encapsulated microneedle patch system for drug delivery is presented. The ink solution comprised of polydimethylsiloxane (PDMS) and multiwalled carbon nanotubes (MWCNTs) with mass concentration of up to 45% is prepared and used to print crack-free stretchable microheaters on substrates with a broad range of materials and geometric curves. The adhesion strength of printed microheater on microneedle patch in elevated temperatures are measured to evaluate their integration performance. Assessments of encapsulated drug release into rat’s skin are confirmed by examining degradation of microneedles, skin morphologies, and released fluorescent signals. Results and demonstrations established here creates a new opportunity for developing sensor controlled smart microneedle patch systems by integrating with wearable electronics, potentially useful in clinic and biomedical research.

Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 557
Author(s):  
Alka Prasher ◽  
Roopali Shrivastava ◽  
Denali Dahl ◽  
Preetika Sharma-Huynh ◽  
Panita Maturavongsadit ◽  
...  

Eosinophilic esophagitis (EoE) is a chronic atopic disease that has become increasingly prevalent over the past 20 years. A first-line pharmacologic option is topical/swallowed corticosteroids, but these are adapted from asthma preparations such as fluticasone from an inhaler and yield suboptimal response rates. There are no FDA-approved medications for the treatment of EoE, and esophageal-specific drug formulations are lacking. We report the development of two novel esophageal-specific drug delivery platforms. The first is a fluticasone-eluting string that could be swallowed similar to the string test “entero-test” and used for overnight treatment, allowing for a rapid release along the entire length of esophagus. In vitro drug release studies showed a target release of 1 mg/day of fluticasone. In vivo pharmacokinetic studies were carried out after deploying the string in a porcine model, and our results showed a high local level of fluticasone in esophageal tissue persisting over 1 and 3 days, and a minimal systemic absorption in plasma. The second device is a fluticasone-eluting 3D printed ring for local and sustained release of fluticasone in the esophagus. We designed and fabricated biocompatible fluticasone-loaded rings using a top-down, Digital Light Processing (DLP) Gizmo 3D printer. We explored various strategies of drug loading into 3D printed rings, involving incorporation of drug during the print process (pre-loading) or after printing (post-loading). In vitro drug release studies of fluticasone-loaded rings (pre and post-loaded) showed that fluticasone elutes at a constant rate over a period of one month. Ex vivo pharmacokinetic studies in the porcine model also showed high tissue levels of fluticasone and both rings and strings were successfully deployed into the porcine esophagus in vivo. Given these preliminary proof-of-concept data, these devices now merit study in animal models of disease and ultimately subsequent translation to testing in humans.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Bogdan Florin Toma ◽  
Razvan Socolov ◽  
Ovidiu Popa ◽  
Demetra Socolov ◽  
Irina Nica ◽  
...  

Endometriosis is considered a serious public health issue because of the large number of females affected by this illness. Chronic pain management in patients with endometriosis demands new strategies to increase the life quality of these patients. The development of drug delivery systems represents a new approach in pain treatment among endometriosis patients. Diclofenac sodium, one of the most utilized nonsteroidal anti-inflammatory drugs (NSAID), has its own limitations when being used in formulas such as oral, parental, or local applications. In this paper, a series of four drug release formulations based on chitosan, 2-hydroxy-5-nitrobenzaldehyde, and diclofenac sodium salt were prepared in view of the investigation of the drug release ability. The formulations were analyzed from a morphological and supramolecular point of view by scanning electron microscopy and polarized light microscopy. The in vitro drug release ability was investigated by mimicking a physiologic environment. A mathematical model, using the fractal paradigm of motion, is utilized to explain the behaviors of the drug delivery system presented in this paper. These results suggest a great potential of the proposed drug delivery system, based on chitosan and 2-hydroxy-5-nitrobenzaldehyde to improve the diclofenac sodium salt bioavailability, and it may represent a future treatment formula for endometriosis pain.


2019 ◽  
Vol 8 (23) ◽  
pp. 1901170 ◽  
Author(s):  
Mengtian Yin ◽  
Li Xiao ◽  
Qingchang Liu ◽  
Sung‐Yun Kwon ◽  
Yi Zhang ◽  
...  

2020 ◽  
Vol 11 (20) ◽  
pp. 3453-3464 ◽  
Author(s):  
S. Salimi ◽  
Y. Wu ◽  
M. I. Evangelista Barreiros ◽  
A. A. Natfji ◽  
S. Khaled ◽  
...  

Prototype drug eluting implants have been 3D printed using a supramolecular polyurethane-PEG formulation. The implants are capable of releasing a pharmaceutical active with effective drug release over a period of up to 8.5 months.


2019 ◽  
Vol 8 (23) ◽  
pp. 1970093
Author(s):  
Mengtian Yin ◽  
Li Xiao ◽  
Qingchang Liu ◽  
Sung‐Yun Kwon ◽  
Yi Zhang ◽  
...  

2020 ◽  
Vol 21 (7) ◽  
Author(s):  
Ioannis Serris ◽  
Panagiotis Serris ◽  
Kathleen M. Frey ◽  
Hyunah Cho

2015 ◽  
Vol 3 (19) ◽  
pp. 3931-3939 ◽  
Author(s):  
Shashwat S. Banerjee ◽  
Kiran J. Todkar ◽  
Ganesh V. Khutale ◽  
Govind P. Chate ◽  
Ankush V. Biradar ◽  
...  

A pH-responsive carbon nanotube based carrier crowned with a pore-blocking calcium phosphate nanocapsule is developed for intracellular anticancer drug delivery.


Author(s):  
Jiaxiang Zhang ◽  
Pengchong Xu ◽  
Anh Q Vo ◽  
Michael A Repka

Abstract Objectives The aim of this study was to couple fused deposition modelling 3D printing with melt extrusion technology to produce core–shell-structured controlled-release tablets with dual-mechanism drug-release performance in a simulated intestinal fluid medium. Coupling abovementioned technologies for personalized drug delivery can improve access to complex dosage formulations at a reasonable cost. Compared with traditional pharmaceutical manufacturing, this should facilitate the following: (1) the ability to manipulate drug release by adjusting structures, (2) enhanced solubility and bioavailability of poorly water-soluble drugs and (3) on-demand production of more complex structured dosages for personalized treatment. Methods Acetaminophen was the model drug and the extrusion process was evaluated by a series of physicochemical characterizations. The geometries, morphologies, and in vitro drug-release performances were compared between directly compressed and 3D-printed tablets. Key findings Initially, 3D-printed tablets released acetaminophen more rapidly than directly compressed tablets. Drug release became constant and steady after a pre-determined time. Thus, rapid effectiveness was ensured by an initially fast acetaminophen release and an extended therapeutic effect was achieved by stabilizing drug release. Conclusions The favourable drug-release profiles of 3D-printed tablets demonstrated the advantage of coupling HME with 3D printing technology to produce personalized dosage formulations.


2019 ◽  
Vol 1 (1) ◽  
pp. 7
Author(s):  
R Nahrowi ◽  
A Setiawan ◽  
Noviany Noviany ◽  
I Sukmana ◽  
S D Yuwono

Paclitaxel is one of the cancer drugs that often used. These drug kills cancer cells byinhibiting mitotic cycle. The efficiency of paclitaxel is increased by the use ofnanomaterials as a carrier of paclitaxel. Nanomaterials can enhance encapsulationefficiency, improve the drug release to the target cell following nanomaterialdegradation, and improve local accumulation of drug in the cell through endocytosisreceptor. Nanomaterial that often used forencapsulation of paclitaxel is a polymerderived from natural resources such as cellulose. The advantages of cellulose as acarrier of paclitaxel are nontoxic, biodegradable, and very abundant from varioussources. One of the potential sources of cellulose for drug delivery system is cassavabaggase.Keywords: Paclitaxel, encapsulation, cell viability, nanocellulose


Author(s):  
EL- Assal I. A. ◽  
Retnowati .

Objective of the present investigation was enthused by the possibility to develop solid lipid nanoparticles (SLNs) of hydrophilic drug acyclovir. Also study vitro and vivo drug delivery. Methods: Drug loaded SLNs (ACV-SLNs) were prepared by high pressure homogenization of aqueous surfactant solutions containing the drug-loaded lipids in the melted or in the solid state with formula optimization study (Different lipid concentration, drug loaded, homogenization / stirring speed and compritol 888ATO: drug ratio). ACV - SLN incorporated in cream base. The pH was evaluated and rheological study. Drug release was evaluated and compared with simple cream- drug, ACV – SLN with compritol 888ATO and marketed cream. The potential of SLN as the carrier for dermal delivery was studied. Results: Particle size analysis of SLNs prove small, smooth, spherical shape particle ranged from 150 to 200 nm for unloaded and from 330 to 444 nm for ACV loaded particles. The EE% for optimal formula is 72% with suitable pH for skin application. Rheological behavior is shear thinning and thixotropic. Release study proved controlled drug release for SLNs especially in formula containing compritol88 ATO. Stability study emphasized an insignificant change in SLNs properties over 6 month. In-vivo study showed significantly higher accumulation of ACV in stratum corneum, dermal layer, and receptor compartment compared with blank skin. Conclusion: AVC-loaded SLNs might be beneficial in controlling drug release, stable and improving dermal delivery of antiviral agent(s).


Sign in / Sign up

Export Citation Format

Share Document