scholarly journals A 3D printed drug delivery implant formed from a dynamic supramolecular polyurethane formulation

2020 ◽  
Vol 11 (20) ◽  
pp. 3453-3464 ◽  
Author(s):  
S. Salimi ◽  
Y. Wu ◽  
M. I. Evangelista Barreiros ◽  
A. A. Natfji ◽  
S. Khaled ◽  
...  

Prototype drug eluting implants have been 3D printed using a supramolecular polyurethane-PEG formulation. The implants are capable of releasing a pharmaceutical active with effective drug release over a period of up to 8.5 months.

2016 ◽  
Vol 7 (12) ◽  
pp. 2202-2208 ◽  
Author(s):  
Shuai Li ◽  
Zhouxiang Zhao ◽  
Wei Wu ◽  
Chunmei Ding ◽  
Jianshu Li

Two types of diblock copolymers are synthesized to construct dual pH-responsive micelles with a charge-conversional property for effective drug delivery.


2014 ◽  
Vol 136 (11) ◽  
Author(s):  
Xiaoxiang Zhu ◽  
Richard D. Braatz

Increasing interests have been raised toward the potential applications of biodegradable poly(lactic-co-glycolic acid) (PLGA) coatings for drug-eluting stents in order to improve the drug delivery and reduce adverse outcomes in stented arteries in patients. This article presents a mathematical model to describe the integrated processes of drug release in a stent with PLGA coating and subsequent drug delivery, distribution, and drug pharmacokinetics in the arterial wall. The integrated model takes into account the PLGA degradation and erosion, anisotropic drug diffusion in the arterial wall, and reversible drug binding. The model simulations first compare the drug delivery from a biodegradable PLGA coating with that from a biodurable coating, including the drug release profiles in the coating, average arterial drug levels, and arterial drug distribution. Using the model for the PLGA stent coating, the simulations further investigate drug internalization, interstitial fluid flow in the arterial wall, and stent embedment for their impact on drug delivery. Simulation results show that these three factors, while imposing little change in the drug release profiles, can greatly change the average drug concentrations in the arterial wall. In particular, each of the factors leads to significant and yet distinguished alterations in the arterial drug distribution that can potentially influence the treatment outcomes. The detailed integrated model provides insights into the design and evaluation of biodegradable PLGA-coated drug-eluting stents for improved intravascular drug delivery.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 557
Author(s):  
Alka Prasher ◽  
Roopali Shrivastava ◽  
Denali Dahl ◽  
Preetika Sharma-Huynh ◽  
Panita Maturavongsadit ◽  
...  

Eosinophilic esophagitis (EoE) is a chronic atopic disease that has become increasingly prevalent over the past 20 years. A first-line pharmacologic option is topical/swallowed corticosteroids, but these are adapted from asthma preparations such as fluticasone from an inhaler and yield suboptimal response rates. There are no FDA-approved medications for the treatment of EoE, and esophageal-specific drug formulations are lacking. We report the development of two novel esophageal-specific drug delivery platforms. The first is a fluticasone-eluting string that could be swallowed similar to the string test “entero-test” and used for overnight treatment, allowing for a rapid release along the entire length of esophagus. In vitro drug release studies showed a target release of 1 mg/day of fluticasone. In vivo pharmacokinetic studies were carried out after deploying the string in a porcine model, and our results showed a high local level of fluticasone in esophageal tissue persisting over 1 and 3 days, and a minimal systemic absorption in plasma. The second device is a fluticasone-eluting 3D printed ring for local and sustained release of fluticasone in the esophagus. We designed and fabricated biocompatible fluticasone-loaded rings using a top-down, Digital Light Processing (DLP) Gizmo 3D printer. We explored various strategies of drug loading into 3D printed rings, involving incorporation of drug during the print process (pre-loading) or after printing (post-loading). In vitro drug release studies of fluticasone-loaded rings (pre and post-loaded) showed that fluticasone elutes at a constant rate over a period of one month. Ex vivo pharmacokinetic studies in the porcine model also showed high tissue levels of fluticasone and both rings and strings were successfully deployed into the porcine esophagus in vivo. Given these preliminary proof-of-concept data, these devices now merit study in animal models of disease and ultimately subsequent translation to testing in humans.


2021 ◽  
Vol 32 (9) ◽  
pp. 2083-2094
Author(s):  
Nanxia Zhang ◽  
Weixing Liu ◽  
Zhipeng Dong ◽  
Yunxue Yin ◽  
Jun Luo ◽  
...  

2019 ◽  
Author(s):  
Mengtian Yin ◽  
Li Xiao ◽  
Qingchang Liu ◽  
Sung-Yun Kwon ◽  
Yi Zhang ◽  
...  

AbstractMicroneedle patch device has been widely utilized for transdermal drug delivery in pain management, but is challenged by accurate control of drug release and subsequent diffusion to human body. The recent emerging wearable electronics that could be integrated with microneedle devices offers a facile approach to address such a challenge. Here a 3D printed microheater integrated drug-encapsulated microneedle patch system for drug delivery is presented. The ink solution comprised of polydimethylsiloxane (PDMS) and multiwalled carbon nanotubes (MWCNTs) with mass concentration of up to 45% is prepared and used to print crack-free stretchable microheaters on substrates with a broad range of materials and geometric curves. The adhesion strength of printed microheater on microneedle patch in elevated temperatures are measured to evaluate their integration performance. Assessments of encapsulated drug release into rat’s skin are confirmed by examining degradation of microneedles, skin morphologies, and released fluorescent signals. Results and demonstrations established here creates a new opportunity for developing sensor controlled smart microneedle patch systems by integrating with wearable electronics, potentially useful in clinic and biomedical research.


2020 ◽  
Vol 21 (7) ◽  
Author(s):  
Ioannis Serris ◽  
Panagiotis Serris ◽  
Kathleen M. Frey ◽  
Hyunah Cho

2021 ◽  
Author(s):  
hao zhang ◽  
ze gao ◽  
Xiaoxiao Li ◽  
Lu Li ◽  
Sujuan Ye ◽  
...  

The multifunctional drug delivery systems enabling the effective drug delivery and comprehensive treatment is critical to successful cancer treatment. It still remains challenging for precise drug delivery to overcome nonspecific...


2011 ◽  
Vol 217-218 ◽  
pp. 71-74
Author(s):  
Jian Xiang Yu ◽  
Qi Song Shi

Chitosan has prompted the continuous impetus for the development of safe and effective drug delivery systems because of its unique physicochemical and biological characteristics. In this study, PEG-chitosan microspheres loaded with levofloxacin for carrying drugs were prepared by the emulsion cross-linking method. The effect of drug process, the emulsifier, the amount of crosslinking agent, stirring speed, temperature, crosslinking time on the prepare experiment were studied. The effect of the quantity of chitosan and PEG, the mass ratio of chitosan and levofloxacin on the drug loading and release ability were studied in drug release experiments too.


Author(s):  
Jiaxiang Zhang ◽  
Pengchong Xu ◽  
Anh Q Vo ◽  
Michael A Repka

Abstract Objectives The aim of this study was to couple fused deposition modelling 3D printing with melt extrusion technology to produce core–shell-structured controlled-release tablets with dual-mechanism drug-release performance in a simulated intestinal fluid medium. Coupling abovementioned technologies for personalized drug delivery can improve access to complex dosage formulations at a reasonable cost. Compared with traditional pharmaceutical manufacturing, this should facilitate the following: (1) the ability to manipulate drug release by adjusting structures, (2) enhanced solubility and bioavailability of poorly water-soluble drugs and (3) on-demand production of more complex structured dosages for personalized treatment. Methods Acetaminophen was the model drug and the extrusion process was evaluated by a series of physicochemical characterizations. The geometries, morphologies, and in vitro drug-release performances were compared between directly compressed and 3D-printed tablets. Key findings Initially, 3D-printed tablets released acetaminophen more rapidly than directly compressed tablets. Drug release became constant and steady after a pre-determined time. Thus, rapid effectiveness was ensured by an initially fast acetaminophen release and an extended therapeutic effect was achieved by stabilizing drug release. Conclusions The favourable drug-release profiles of 3D-printed tablets demonstrated the advantage of coupling HME with 3D printing technology to produce personalized dosage formulations.


2019 ◽  
Vol 1 (1) ◽  
pp. 7
Author(s):  
R Nahrowi ◽  
A Setiawan ◽  
Noviany Noviany ◽  
I Sukmana ◽  
S D Yuwono

Paclitaxel is one of the cancer drugs that often used. These drug kills cancer cells byinhibiting mitotic cycle. The efficiency of paclitaxel is increased by the use ofnanomaterials as a carrier of paclitaxel. Nanomaterials can enhance encapsulationefficiency, improve the drug release to the target cell following nanomaterialdegradation, and improve local accumulation of drug in the cell through endocytosisreceptor. Nanomaterial that often used forencapsulation of paclitaxel is a polymerderived from natural resources such as cellulose. The advantages of cellulose as acarrier of paclitaxel are nontoxic, biodegradable, and very abundant from varioussources. One of the potential sources of cellulose for drug delivery system is cassavabaggase.Keywords: Paclitaxel, encapsulation, cell viability, nanocellulose


Sign in / Sign up

Export Citation Format

Share Document