scholarly journals Imaging FCS Delineates Subtle Heterogeneity in Plasma Membranes of Resting Mast Cells

2019 ◽  
Author(s):  
Nirmalya Bag ◽  
David A. Holowka ◽  
Barbara A. Baird

ABSTRACTA myriad of transient, nanoscopic lipid- and protein-based interactions confer a steady-state organization of plasma membrane in resting cells that is poised to orchestrate assembly of key signaling components upon reception of an extracellular stimulus. Although difficult to observe directly in live cells, these subtle interactions can be discerned by their impact on the diffusion of membrane constituents. Herein, we quantified the diffusion properties of a panel of structurally distinct lipid-anchored and transmembrane (TM) probes in RBL mast cells by multiplexed Imaging Fluorescence Correlation Spectroscopy. We developed a statistical analysis of data combined from many pixels over multiple cells to characterize differences as small as 10% in diffusion coefficients, which reflect differences in underlying interactions. We found that the distinctive diffusion properties of lipid-anchored probes can be explained by their dynamic partitioning into ordered proteo-lipid nanodomains, which encompass a major fraction of the membrane and whose physical properties are influenced by actin polymerization. Effects on diffusion by functional protein modules in both lipid-anchored and TM probes reflect additional complexity in steady-state membrane organization. The contrast we observe between different probes diffusing through the same membrane milieu represent the dynamic resting steady-state, which serves as a baseline for monitoring plasma membrane remodeling that occurs upon stimulation.

2018 ◽  
Author(s):  
Falk Schneider ◽  
Dominic Waithe ◽  
Silvia Galiani ◽  
Jorge Bernadino de la Serna ◽  
Erdinc Sezgin ◽  
...  

AbstractThe diffusion dynamics in the cellular plasma membrane provides crucial insights into the molecular interactions, organization and bioactivity. Fluorescence correlation spectroscopy combined with super-resolution stimulated emission depletion nanoscopy (STED-FCS) measures such dynamics with high spatial and temporal resolution and reveals nanoscale diffusion characteristics by measuring the molecular diffusion in conventional confocal mode and super-resolved STED mode sequentially. However, to directly link the spatial and the temporal information, a method that simultaneously measures the diffusion in confocal and STED modes is needed. Here, to overcome this problem, we establish an advanced STED-FCS measurement method; line interleaved excitation scanning STED-FCS (LIESS-FCS) which discloses the molecular diffusion modes at different spatial positions with a single measurement. It relies on fast beam-scanning along a line with alternating laser illumination that yields, for each pixel, the apparent diffusion coefficients for two different observation spot sizes (conventional confocal and super-resolved STED). We demonstrate the potential of the LIESS-FCS approach with simulations and experiments on lipid diffusion in model and live cell plasma membranes. We also apply LIESS-FCS to investigate the spatio-temporal organization of GPI-anchored proteins in the plasma membrane of live cells which interestingly show multiple diffusion modes at different spatial positions.


Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 568
Author(s):  
Jakob L. Kure ◽  
Thommie Karlsson ◽  
Camilla B. Andersen ◽  
B. Christoffer Lagerholm ◽  
Vesa Loitto ◽  
...  

The formation of nanodomains in the plasma membrane are thought to be part of membrane proteins regulation and signaling. Plasma membrane proteins are often investigated by analyzing the lateral mobility. k-space ICS (kICS) is a powerful image correlation spectroscopy (ICS) technique and a valuable supplement to fluorescence correlation spectroscopy (FCS). Here, we study the diffusion of aquaporin-9 (AQP9) in the plasma membrane, and the effect of different membrane and cytoskeleton affecting drugs, and therefore nanodomain perturbing, using kICS. We measured the diffusion coefficient of AQP9 after addition of these drugs using live cell Total Internal Reflection Fluorescence imaging on HEK-293 cells. The actin polymerization inhibitors Cytochalasin D and Latrunculin A do not affect the diffusion coefficient of AQP9. Methyl-β-Cyclodextrin decreases GFP-AQP9 diffusion coefficient in the plasma membrane. Human epidermal growth factor led to an increase in the diffusion coefficient of AQP9. These findings led to the conclusion that kICS can be used to measure diffusion AQP9, and suggests that the AQP9 is not part of nanodomains.


1994 ◽  
Vol 3 (7) ◽  
pp. S21-S24 ◽  
Author(s):  
A. Kantar ◽  
N. Oggiano ◽  
P. L. Giorgi ◽  
G. V. Coppa ◽  
R. Gabbianelli ◽  
...  

The effect of nedocromil sodium on the plasma membrane fluidity of polymorphonuclear leukocytes (PMNs) was investigated by measuring steady-state fluorescence anisotropy of 1-[4-trimethylammonium-phenyl]-6-phenyl- 1,3,5-hexatriene (TMA-DPH) incorporated in the membrane. Our results show that nedocromil sodium 300 μM significantly decreased membrane fluidity of PMNs. The decrease in membrane fluidity of PMNs induced by fMLP was abolished in the presence of nedocromil sodium. These data suggest that nedocromil sodium interferes with the plasma membranes of PMNs and modulates their activities.


Blood ◽  
1996 ◽  
Vol 87 (1) ◽  
pp. 341-349 ◽  
Author(s):  
Y Cui ◽  
KA Harvey ◽  
RA Siddiqui ◽  
J Jansen ◽  
LP Akard ◽  
...  

Abstract Phosphotyrosine phosphatases (PTPases) regulate cellular metabolic activation by reversing the effects of tyrosine kinases activated earlier in intracellular signaling pathways. We coupled fluorescence-activated cell sorter analysis using anti-CD45 monoclonal antibody with direct measurements of enzyme activity in resolved subcellular fractions to define mechanisms that potentially regulate the availability and activity of CD45-PTPase on neutrophil plasma membranes. Neutrophils in freshly obtained blood as well as neutrophils freshly isolated from blood were found to possess detectable levels of plasma membrane CD45 as assessed by immunofluorescence. However, plasma membranes from these cells were essentially devoid of PTPase catalytic activity, which was largely confined to the specific granules. Granulocyte-macrophage colony-stimulating factor (GM-CSF) upregulated both the catalytic and antigenic components of CD45-PTPase on the plasma membrane of these cells. Upregulation was associated with a shift in the particulate subcellular PTPase catalytic activity from the specific granule fraction to the plasma membrane fraction. The tyrosine kinase inhibitor genistein abrogated GM-CSF-promoted upregulation of plasma membrane CD45 PTPase but did not prevent the GM-CSF-dependent decrease in specific granule catalytic activity. Anti-CD45 antibody immunoprecipitated PTPase activity from both specific granules of resting cells and plasma membranes of GM-CSF-treated cells. However, antiphosphotyrosine immunoprecipitated only activity that had translocated to the plasma membrane, suggesting a role for CD45 phosphorylation in translocation. Western analysis confirmed the tyrosine phosphorylation of CD45 in plasma membranes of GM-CSF-treated neutrophils. Preincubation of plasma membranes of GM-CSF-stimulated neutrophils with cytosol from resting cells resulted in a time- and temperature-dependent loss in membrane PTPase as a consequence of the effects of a cytosolic inactivator. Cytosol obtained from stimulated neutrophils possessed substantially reduced levels of this PTPase inactivator. We conclude that activity of the catalytic component of membrane PTPase in circulating neutrophils is regulated by a cytosolic inactivator. Upon stimulation, intact CD45 PTPase is incorporated into the plasma membrane by a process that requires tyrosine phosphorylation. As a result of inhibition of the cytosolic inactivator, the translocated PTPase expresses full activity, thereby amplifying the potential regulatory influence of the enzyme on the cells' functional response.


2009 ◽  
Vol 29 (12) ◽  
pp. 3297-3306 ◽  
Author(s):  
Adam Mor ◽  
Joseph P. Wynne ◽  
Ian M. Ahearn ◽  
Michael L. Dustin ◽  
Guangwei Du ◽  
...  

ABSTRACT Rap1 is a small GTPase that modulates adhesion of T cells by regulating inside-out signaling through LFA-1. The bulk of Rap1 is expressed in a GDP-bound state on intracellular vesicles. Exocytosis of these vesicles delivers Rap1 to the plasma membrane, where it becomes activated. We report here that phospholipase D1 (PLD1) is expressed on the same vesicular compartment in T cells as Rap1 and is translocated to the plasma membrane along with Rap1. Moreover, PLD activity is required for both translocation and activation of Rap1. Increased T-cell adhesion in response to stimulation of the antigen receptor depended on PLD1. C3G, a Rap1 guanine nucleotide exchange factor located in the cytosol of resting cells, translocated to the plasma membranes of stimulated T cells. Our data support a model whereby PLD1 regulates Rap1 activity by controlling exocytosis of a stored, vesicular pool of Rap1 that can be activated by C3G upon delivery to the plasma membrane.


2014 ◽  
Vol 289 (44) ◽  
pp. 30842-30856 ◽  
Author(s):  
Yasuhiro Hayashi ◽  
Yoko Nemoto-Sasaki ◽  
Takashi Tanikawa ◽  
Saori Oka ◽  
Kiyoto Tsuchiya ◽  
...  

Membrane fusion between the viral envelope and plasma membranes of target cells has previously been correlated with HIV-1 infection. Lipids in the plasma membrane, including sphingomyelin, may be crucially involved in HIV-1 infection; however, the role of lipid-metabolic enzymes in membrane fusion remains unclear. In this study, we examined the roles of sphingomyelin synthase (SMS) in HIV-1 Env-mediated membrane fusion using a cell-cell fusion assay with HIV-1 mimetics and their target cells. We employed reconstituted cells as target cells that stably express Sms1 or Sms2 in Sms-deficient cells. Fusion susceptibility was ∼5-fold higher in Sms2-expressing cells (not in Sms1-expressing cells) than in Sms-deficient cells. The enhancement of fusion susceptibility observed in Sms2-expressing cells was reversed and reduced by Sms2 knockdown. We also found that catalytically nonactive Sms2 promoted membrane fusion susceptibility. Moreover, SMS2 co-localized and was constitutively associated with the HIV receptor·co-receptor complex in the plasma membrane. In addition, HIV-1 Env treatment resulted in a transient increase in nonreceptor tyrosine kinase (Pyk2) phosphorylation in Sms2-expressing and catalytically nonactive Sms2-expressing cells. We observed that F-actin polymerization in the region of membrane fusion was more prominent in Sms2-expressing cells than Sms-deficient cells. Taken together, our research provides insight into a novel function of SMS2 which is the regulation of HIV-1 Env-mediated membrane fusion via actin rearrangement.


1995 ◽  
Vol 108 (3) ◽  
pp. 1003-1016 ◽  
Author(s):  
S.C. Kiley ◽  
P.J. Parker

U937 human promonocytic leukemia cells express PKC isozymes beta 1, beta 2, epsilon and zeta. Indirect immunocytofluorescence using affinity-purified PKC-specific antibodies indicates that each of the endogenous PKC isozymes in U937 cells display a unique compartmentalization within the intact cell. PKC-beta 1 is distributed between two identifiable pools: a cytoplasmic pool which redistributes to the plasma membrane upon activation with acute phorbol ester-treatment, and a membrane-bound pool associated with intracellular vesicles containing beta 2-integrin adhesion molecules, cd11b and cd11c. The vesicle-associated PKC-beta 1 translocates with the secretory granules to the plasma membrane upon agonist-stimulated activation. PKC-beta 2 is associated with the microtubule cytoskeleton in resting cells. PKC overlay assays indicate that PKC-beta 2 binds to proteins associated with microtubules, and not directly to tubulin. PKC-epsilon is associated with filamentous structures in resting cells and redistributes to the perinuclear region upon activation with phorbol esters. In differentiated U937 cells, PKC-beta 1 remains associated with vesicles translocating from the trans-Golgi region to the plasma membrane and PKC-epsilon is primarily associated with perinuclear and plasma membranes. PKC-zeta, which does not respond to phorbol ester treatment, is primarily cytosolic in undifferentiated cells and accumulates in the nucleus of differentiated cells blocked in the G2 phase of the cell cycle. The data clearly demonstrate that individual PKCs localize to different subcellular compartments and promote the hypothesis that PKC subcellular localization is indicative of unique functions for individual PKC isozymes.


2016 ◽  
Vol 52 (90) ◽  
pp. 13269-13272 ◽  
Author(s):  
Michael R. Dent ◽  
Ismael López-Duarte ◽  
Callum J. Dickson ◽  
Phoom Chairatana ◽  
Harry L. Anderson ◽  
...  

A thiophene-based molecular rotor was used to probe ordering and viscosity within artificial lipid bilayers and live cell plasma membranes.


2000 ◽  
Vol 66 (9) ◽  
pp. 3823-3827 ◽  
Author(s):  
Kenji Iwahori ◽  
Fumiaki Takeuchi ◽  
Kazuo Kamimura ◽  
Tsuyoshi Sugio

ABSTRACT Of 100 strains of iron-oxidizing bacteria isolated,Thiobacillus ferrooxidans SUG 2-2 was the most resistant to mercury toxicity and could grow in an Fe2+ medium (pH 2.5) supplemented with 6 μM Hg2+. In contrast, T. ferrooxidans AP19-3, a mercury-sensitive T. ferrooxidans strain, could not grow with 0.7 μM Hg2+. When incubated for 3 h in a salt solution (pH 2.5) with 0.7 μM Hg2+, resting cells of resistant and sensitive strains volatilized approximately 20 and 1.7%, respectively, of the total mercury added. The amount of mercury volatilized by resistant cells, but not by sensitive cells, increased to 62% when Fe2+ was added. The optimum pH and temperature for mercury volatilization activity were 2.3 and 30�C, respectively. Sodium cyanide, sodium molybdate, sodium tungstate, and silver nitrate strongly inhibited the Fe2+-dependent mercury volatilization activity of T. ferrooxidans. When incubated in a salt solution (pH 3.8) with 0.7 μM Hg2+ and 1 mM Fe2+, plasma membranes prepared from resistant cells volatilized 48% of the total mercury added after 5 days of incubation. However, the membrane did not have mercury reductase activity with NADPH as an electron donor. Fe2+-dependent mercury volatilization activity was not observed with plasma membranes pretreated with 2 mM sodium cyanide. Rusticyanin from resistant cells activated iron oxidation activity of the plasma membrane and activated the Fe2+-dependent mercury volatilization activity of the plasma membrane.


Sign in / Sign up

Export Citation Format

Share Document