scholarly journals A G-protein-coupled receptor mediates neuropeptide-induced oocyte maturation in the jellyfish Clytia

2019 ◽  
Author(s):  
Gonzalo Quiroga Artigas ◽  
Pascal Lapébie ◽  
Lucas Leclère ◽  
Philip Bauknecht ◽  
Julie Uveira ◽  
...  

AbstractThe reproductive hormones that trigger oocyte meiotic maturation and release from the ovary vary greatly between animal species. Identification of receptors for these Maturation Inducing Hormones (MIHs), and understanding how they initiate the largely conserved maturation process, remain important challenges. In hydrozoan cnidarians including the jellyfish Clytia hemisphaerica, MIH comprises neuropeptides released from somatic cells of the gonad. We identified the receptor (MIHR) for these MIH neuropeptides in Clytia using cell culture-based “deorphanization” of candidate oocyte-expressed GPCRs. MIHR mutant jellyfish generated using CRISPR-Cas9 had severe defects in gamete development or in spawning both in males and females. Female gonads, or oocytes isolated from MIHR mutants, failed to respond to synthetic MIH. Treatment with the cAMP analogue 5’Br-cAMP to mimic cAMP rise at maturation onset rescued meiotic maturation and spawning. Injection of inhibitory antibodies to GαS into wild type oocytes phenocopied the MIHR mutants. These results provide the molecular links between MIH stimulation and meiosis initiation in hydrozoan oocytes. Molecular phylogeny grouped Clytia MIHR with a subset of bilaterian neuropeptide receptors including Neuropeptide Y, Gonadotropin Inhibitory Hormone, pyroglutamylated RFamide and Luqin, all upstream regulators of sexual reproduction. This identification and functional characterisation of a cnidarian peptide GPCR advances our understanding of oocyte maturation initiation and sheds light on the evolution of neuropeptide-hormone systems.

2017 ◽  
Author(s):  
Noriyo Takeda ◽  
Yota Kon ◽  
Gonzalo Quiroga Artigas ◽  
Pascal Lapébie ◽  
Carine Barreau ◽  
...  

AbstractOocyte meiotic maturation is a critical process for sexually reproducing animals, and its core cytoplasmic regulators are highly conserved between species. In contrast, the few known Maturation Inducing Hormones (MIHs) that act on oocytes to initiate this process have highly variable molecular natures. Using the hydrozoan jellyfish species Clytia and Cladonema, which undergo oocyte maturation in response to dark-light and light-dark transitions respectively, we deduced from gonad transcriptome data amidated tetrapeptide sequences and found that synthetic peptides could induce maturation of isolated oocytes at nanomolar concentrations. Antibody preabsorption experiments conclusively demonstrated that these W/RPRPamide-related neuropeptides account for endogenous MIH activity produced by isolated gonads. We further showed that the MIH peptides are synthesised by neural-type cells in the gonad, are released following dark-light / light-dark transitions, and probably act on the oocyte surface. They are produced by male as well as female jellyfish and can trigger both sperm and egg release, suggesting a role in spawning coordination. We propose an evolutionary link between hydrozoan MIH and the neuropeptide hormones that regulate reproduction upstream of MIH in bilaterian species.


Author(s):  
Hao Qin ◽  
Yi Qu ◽  
Yi-Feng Yuan ◽  
Yang-Yang Li ◽  
Jie Qiao

RBM14 is an RNA-binding protein that regulates spindle integrity in mitosis; however, its functions during meiosis are still unclear. In this study, we discovered that RBM14 expression was down-regulated in oocytes from old mice. The RBM14 distribution at different stages of meiosis was explored, while it presents overlapped localization patterns with α-tubulin in MI- and MII-stage oocytes. Treatment of MI-stage oocytes with spindle-perturbing agents revealed that RBM14 was co-localized with microtubules. RBM14 knockdown with RBM14-specific morpholino showed that RBM14-depleted oocytes underwent symmetric division compared to the controls. RBM14 knockdown also resulted in spindle defects and chromosome abnormalities during oocyte maturation, presumably due to α-tubulin hyperacetylation. Co-immunoprecipitation analysis demonstrated that RBM14 is interacted with endogenous α-tubulin in mammalian cells. These findings indicate that RBM14 is an essential modulator of oocyte meiotic maturation by regulating α-tubulin acetylation to affect spindle morphology and chromosome alignment. Consequently, RBM14 represents a potential biomarker of oocyte quality and a novel therapeutic target in women with oocyte maturation failure.


Reproduction ◽  
2005 ◽  
Vol 130 (6) ◽  
pp. 791-799 ◽  
Author(s):  
Lisa M Mehlmann

Mammalian oocytes grow and undergo meiosis within ovarian follicles. Oocytes are arrested at the first meiotic prophase, held in meiotic arrest by the surrounding follicle cells until a surge of LH from the pituitary stimulates the immature oocyte to resume meiosis. Meiotic arrest depends on a high level of cAMP within the oocyte. This cAMP is generated by the oocyte, through the stimulation of the GsG-protein by the G-protein-coupled receptor, GPR3. Stimulation of meiotic maturation by LH occurs via its action on the surrounding somatic cells rather than on the oocyte itself. LH induces the expression of epidermal growth factor-like proteins in the mural granulosa cells that act on the cumulus cells to trigger oocyte maturation. The signaling pathway between the cumulus cells and the oocyte, however, remains unknown. This review focuses on recent studies highlighting the importance of the oocyte in producing cAMP to maintain arrest, and discusses possible targets at the level of the oocyte on which LH could act to stimulate meiotic resumption.


Zygote ◽  
2019 ◽  
Vol 28 (1) ◽  
pp. 45-50
Author(s):  
Zhuoni Xiao ◽  
Jiali Peng ◽  
Meiting Xie ◽  
Jing Yang ◽  
Wangming Xu

SummaryEstablishment of cellular polarity is one of the key events during oocyte maturation. Inscuteable (Insc) has been identified as a key regulator of cell polarity during asymmetric division in Drosophila. However, the function of its evolutionarily conserved mammalian homologue, mInscuteable (mInsc), in mouse meiotic maturation is not clear. In this study, we investigated the roles of mInsc in mouse oocyte maturation. mInsc was detected at all stages of oocyte maturation. The protein level of mInsc was slightly higher at the germinal vesicle breakdown (GVBD) stage and remained constant during mouse oocyte maturation. The subcellular localization of mInsc overlapped with spindle microtubules. Disruption of microtubules and microfilaments caused changes in the localization of mInsc. Depletion or overexpression of mInsc significantly decreased the maturation rates of mouse oocytes. Depletion of mInsc significantly affected asymmetric division, spindle assembly, alignments of chromosomes and actin cap formation. Taken together, our results demonstrated that mInsc regulates meiotic spindle organization during mouse meiotic maturation.


2013 ◽  
Vol 25 (3) ◽  
pp. 495 ◽  
Author(s):  
Ya-Peng Wang ◽  
Shu-Tao Qi ◽  
Yanchang Wei ◽  
Zhao-Jia Ge ◽  
Lei Chen ◽  
...  

UCHL5IP is one of the subunits of the haus complex, which is important for microtubule generation, spindle bipolarity and accurate chromosome segregation in Drosophila and human mitotic cells. In this study, the expression and localisation of UCHL5IP were explored, as well as its functions in mouse oocyte meiotic maturation. The results showed that the UCHL5IP protein level was consistent during oocyte maturation and it was localised to the meiotic spindle in MI and MII stages. Knockdown of UCHL5IP led to spindle defects, chromosome misalignment and disruption of γ-tubulin localisation in the spindle poles. These results suggest that UCHL5IP plays critical roles in spindle formation during mouse oocyte meiotic maturation.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2553 ◽  
Author(s):  
Ru-Xia Jia ◽  
Xing Duan ◽  
Si-Jing Song ◽  
Shao-Chen Sun

LIMKi 3 is a specific selective LIMK inhibitor against LIMK1 and LIMK2, while LIMK1 and LIMK2 are the main regulators of actin cytoskeleton to participate in many cell activities. However, the effect of LIMKi 3 in porcine oocyte meiosis is still unclear. The present study was designed to investigate the effects of LIMKi 3 and potential regulatory role of LIMK1/2 on porcine oocyte meiotic maturation. Immunofluorescent staining of p-LIMK1/2 antibody showed that LIMK1/2 was localized mainly to the cortex of porcine oocyte, which co-localized with actin. After LIMKi 3 treatment, the diffusion of COCs became weak and the rate of polar body extrusion was decreased. This could be rescued by moving oocytes to fresh medium. After prolonging the culture time of oocytes, the maturation rate of porcine oocyte increased in LIMKi 3 groups, indicating that LIMKi 3 may suppress the cell cycle during porcine oocyte maturation. We also found that after LIMKi 3 treatment actin distribution was significantly disturbed at porcine oocyte membranes and cytoplasm, indicating the conserved roles of LIMK1/2 on actin dynamics. Next we examined the meiotic spindle positioning in porcine oocyte, and the results showed that a majority of spindles were not attached to the cortex of porcine oocyte, indicating that LIMKi 3 may affect actin-mediated spindle positioning. Taken together, these results showed that LIMK1/2 inhibitor LIMKi 3 had a repressive role on porcine oocyte meiotic maturation.


2005 ◽  
Vol 34 (2) ◽  
pp. 459-472 ◽  
Author(s):  
M Zhang ◽  
Y Tao ◽  
B Zhou ◽  
H Xie ◽  
F Wang ◽  
...  

Atrial natriuretic peptide (ANP) as well as its receptors is found in mammalian ovary and follicular cells and its function in oocyte meiotic maturation has also been reported in Xenopus, hamster and rat. But the results are controversial and the physiological mechanism of ANP on oocyte maturation is not clear, especially the relationship between gonadotrophin and ANP as well as the signal transduction, and these need further study. The present study conducted experiments to examine these questions by using drug treatment and Western blot analysis and focused on pig oocyte meiotic maturation and cumulus expansion in vitro. The results revealed that ANP could inhibited FSH-induced pig oocyte maturation and cumulus expansion and prevent the full phosphorylation of mitogen-activated protein kinase in both oocytes and cumulus cells, and that these inhibitory effects could be mimicked by 8-Br-cyclic guanosine 5′-monophosphate (8-Br-cGMP), but blocked by a protein kinase G (PKG) inhibitor KT5823. Zaprinast, a cGMP-specific phosphodiesterase inhibitor, could enhance the inhibitory effect of ANP on oocyte maturation. A specific analogue of ANP, C-ANP-(4–23), which binds to the natriuretic peptide receptor-C (NPRC), had no effect in either FSH-induced or spontaneous oocyte maturation. Treatment with forskolin, a stimulator of adenylate cyclase, had a biphasic effect; 44 h treatment induced cumulus expansion but inhibited oocyte maturation while 2 h treatment induced maturation of cumulus-enclosed oocytes (CEOs). Both ANP and C-ANP-(4–23) could inhibit the effect of forskolin on CEO maturation, and these inhibitory effects of ANP/C-ANP-(4–23) could be blocked by preincubation with pertussis toxin (PT), consistent with mediation by a Gi protein(s) in the cumulus cells. All these results suggest that ANP is a multifunctional regulator of FSH and forskolin on pig CEO maturation by two signalling mechanisms: one is via a cGMP/PKG pathway, the other is via NPRC receptors in cumulus cells and the activation of the PT-sensitive Gi protein(s).


Reproduction ◽  
2009 ◽  
Vol 138 (3) ◽  
pp. 439-452 ◽  
Author(s):  
Teresa De Santis ◽  
Valeria Casavola ◽  
Stephan Joel Reshkin ◽  
Lorenzo Guerra ◽  
Barbara Ambruosi ◽  
...  

The extracellular calcium-sensing receptor (CASR) plays an important role in cells involved in calcium (Ca2+) homeostasis by directly sensing changes in the extracellular Ca2+ion concentration. We previously reported the localization and quantitative expression of CASR protein in human oocytes. In this study, we examined the expression and the functional role of CASR during oocyte meiotic maturation in a large mammal animal model, the horse. As in humans, CASR protein was found to be expressed in equine oocytes and cumulus cells. Western-blot analysis revealed a single 130 kDa band in denuded oocytes and a doublet of 130–120 kDa in cumulus cells. CASR labeling was observed by confocal microscopy in cumulus cells and in oocytes on the plasma membrane and within the cytoplasm at all examined stages of meiosis. Functionally, the CASR allosteric effector NPS R-467, in the presence of 2.92 mM external Ca2+, increased oocyte maturation rate in a dose-dependent manner and its stimulatory effect was attenuated by pre-treatment with the CASR antagonist NPS 2390. NPS R-467 had no effect in suboptimal external Ca2+(0.5 mM), indicating that it requires higher external Ca2+to promote oocyte maturation. In oocytes treated with NPS R-467, CASR staining increased at the plasmalemma and was reduced in the cytosol. Moreover, NPS R-467 increased the activity of MAPK, also called ERK, in cumulus cells and oocytes. These results provide evidence of a novel signal transduction pathway modulating oocyte meiotic maturation in mammals in addition to the well-known systemic hormones.


2019 ◽  
Author(s):  
Zubing Cao ◽  
Di Gao ◽  
Tengteng Xu ◽  
Ling Zhang ◽  
Xu Tong ◽  
...  

ABSTRACTThousands of circular RNAs (circRNAs) have been recently discovered in cumulus cells and oocytes from several species. However, the expression and function of circRNA during porcine oocyte meiotic maturation have been never examined. Here, we separately identified 7,067 and 637 circRNAs in both the cumulus cell and the oocyte via deep sequencing and bioinformatic analysis. Further analysis revealed that a faction of circRNAs is differentially expressed (DE) in a developmental stage-specific manner. The host genes of DE circRNAs are markedly enriched to multiple signaling pathways associated with cumulus cell function and oocyte maturation. Additionally, most DE circRNAs harbor several miRNA targets, suggesting that these DE circRNAs potentially act as miRNA sponge. Importantly, we found that maternalcircARMC4knockdown by siRNA microinjection caused a severely impaired chromosome alignment, and significantly inhibited first polar body extrusion and early embryo development. Taken together, these results demonstrate for the first time that circRNAs are abundantly and dynamically expressed in a developmental stage-specific manner in cumulus cells and oocytes, and maternally expressedcircARMC4is essential for porcine oocyte meiotic maturation and early embryo development.


Sign in / Sign up

Export Citation Format

Share Document