scholarly journals A Brain to Spine Interface for Transferring Artificial Sensory Information

2019 ◽  
Author(s):  
Amol P. Yadav ◽  
Daniel Li ◽  
Miguel A. L. Nicolelis

AbstractLack of sensory feedback is a major obstacle in the rapid absorption of prosthetic devices by the brain. While electrical stimulation of cortical and subcortical structures provides unique means to deliver sensory information to higher brain structures, these approaches require highly invasive surgery and are dependent on accurate targeting of brain structures. Here, we propose a semi-invasive method, Dorsal Column Stimulation (DCS) as a tool for transferring sensory information to the brain. Using this new approach, we show that rats can learn to discriminate artificial sensations generated by DCS and that DCS-induced learning results in corticostriatal plasticity. We also demonstrate a proof of concept brain-to-spine interface (BTSI), whereby tactile and artificial sensory information are decoded from the brain of an “encoder” rat, transformed into DCS pulses, and delivered to the spinal cord of a second “decoder” rat while the latter performs an analog-to-digital conversion during a tactile discrimination task. These results suggest that DCS can be used as an effective sensory channel to transmit prosthetic information to the brain or between brains, and could be developed as a novel platform for delivering tactile and proprioceptive feedback in clinical applications of brain-machine interfaces.

Insects ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 886
Author(s):  
Silvana Piersanti ◽  
Manuela Rebora ◽  
Gianandrea Salerno ◽  
Sylvia Anton

Dragonflies are hemimetabolous insects, switching from an aquatic life style as nymphs to aerial life as adults, confronted to different environmental cues. How sensory structures on the antennae and the brain regions processing the incoming information are adapted to the reception of fundamentally different sensory cues has not been investigated in hemimetabolous insects. Here we describe the antennal sensilla, the general brain structure, and the antennal sensory pathways in the last six nymphal instars of Libellula depressa, in comparison with earlier published data from adults, using scanning electron microscopy, and antennal receptor neuron and antennal lobe output neuron mass-tracing with tetramethylrhodamin. Brain structure was visualized with an anti-synapsin antibody. Differently from adults, the nymphal antennal flagellum harbors many mechanoreceptive sensilla, one olfactory, and two thermo-hygroreceptive sensilla at all investigated instars. The nymphal brain is very similar to the adult brain throughout development, despite the considerable differences in antennal sensilla and habitat. Like in adults, nymphal brains contain mushroom bodies lacking calyces and small aglomerular antennal lobes. Antennal fibers innervate the antennal lobe similar to adult brains and the gnathal ganglion more prominently than in adults. Similar brain structures are thus used in L. depressa nymphs and adults to process diverging sensory information.


2013 ◽  
Vol 12 (3) ◽  
pp. 52-60 ◽  
Author(s):  
L. N. Prakhova ◽  
Ye. P. Magonov ◽  
A. G. Ilves ◽  
A. A. Bogdan ◽  
G. V. Kataeva ◽  
...  

The aim of the study was to determine the relationship of global and regional cerebral atrophy and volume of demyelination lesions in the brain with a clinical picture in patients with multiple sclerosis (MS). The study involved 55 patients with MS. Control group included 22 healthy volunteers. Patients were divided into groups according to the severity of disability, the type and duration of disease. Assessment of general and regional atrophy was performed by post-process volumetric segmentation of MRI data, which was acquired at 3T Philips Achieva scanner. The post-processing was done with the FreeSurfer software. It is shown that in MS patients brain atrophy develops both by means of gray matter (including the cortex and subcortical structures), and white matter, along with demyelination. Global and regional atrophy is associated with the severity of disability of patients according to EDSS scale, but not with the duration and type of the disease. Neurodegenerative changes of brain structures evolve with different rates, have different intensity and determine the set of symptoms of neurological impairment and severity of disability, which indicates the presence of certain patterns of the process of atrophy in the brain, forming the clinical picture of the disease.


Author(s):  
Farran Briggs

Many mammals, including humans, rely primarily on vision to sense the environment. While a large proportion of the brain is devoted to vision in highly visual animals, there are not enough neurons in the visual system to support a neuron-per-object look-up table. Instead, visual animals evolved ways to rapidly and dynamically encode an enormous diversity of visual information using minimal numbers of neurons (merely hundreds of millions of neurons and billions of connections!). In the mammalian visual system, a visual image is essentially broken down into simple elements that are reconstructed through a series of processing stages, most of which occur beneath consciousness. Importantly, visual information processing is not simply a serial progression along the hierarchy of visual brain structures (e.g., retina to visual thalamus to primary visual cortex to secondary visual cortex, etc.). Instead, connections within and between visual brain structures exist in all possible directions: feedforward, feedback, and lateral. Additionally, many mammalian visual systems are organized into parallel channels, presumably to enable efficient processing of information about different and important features in the visual environment (e.g., color, motion). The overall operations of the mammalian visual system are to: (1) combine unique groups of feature detectors in order to generate object representations and (2) integrate visual sensory information with cognitive and contextual information from the rest of the brain. Together, these operations enable individuals to perceive, plan, and act within their environment.


2021 ◽  
Author(s):  
Rakshit Dadarwal ◽  
Michael Ortiz-Rios ◽  
Susann Boretius

AbstractRecent progress in quantitative susceptibility mapping (QSM) has enabled the accurate delineation of submillimeter scale subcortical brain structures in humans. QSM reflects the magnetic susceptibility arising from the spatial distribution of iron, myelin, and calcium in the brain. The simultaneous visualization of cortical, subcortical, and white matter structure remains, however, challenging, utilizing QSM data solely. Here we present TQ-SILiCON, a fusion method that enhances the contrast of cortical and subcortical structures and provides an excellent white matter delineation by combining QSM and conventional T1-weighted (T1w) images. In this study, we first established QSM in the macaque monkey to map iron-rich subcortical structures. Implementing the same QSM acquisition and analyses methods allowed a similar accurate delineation of subcortical structures in humans. Moreover, applying automatic brain tissue segmentation to TQ-SILiCON images of the macaque improved the classification of the brain tissue types as compared to the single T1 contrast. Furthermore, we validate our dual-contrast fusion approach in humans and similarly demonstrate improvements in automated segmentation of cortical and subcortical structures. We believe the proposed contrast will facilitate translational studies in non-human primates to investigate the pathophysiology of neurodegenerative diseases that affect the subcortical structures of the basal ganglia in humans.HighlightsThe subcortical gray matter areas of macaque monkeys are reliably mapped by QSM, much as they are in humans.Combining T1w and QSM images improves the visualization and segmentation of white matter, cortical and subcortical structures in the macaque monkey.The proposed dual contrast TQ-SILiCON provides a similar image quality also in humans.TQ-SILiCON facilitates comparative and translational neuroscience studies investigating subcortical structures.


1997 ◽  
Vol 75 (6) ◽  
pp. 651-667 ◽  
Author(s):  
André Parent

This paper provides an overview of the phylogenetic evolution and structural organization of the basal ganglia. These large subcortical structures that form the core of the cerebral hemispheres directly participate in the control of psychomotor behavior. Neuroanatomical methods combined with transmitter localization procedures were used to study the chemical organization of the forebrain in each major group of vertebrates. The various components of the basal ganglia appear well developed in amniote vertebrates, but remain rudimentary in anamniote vertebrates. For example, a typical substantia nigra composed of numerous dopaminergic neurons that project to the striatum already exists in the brain of reptiles. Other studies in mammals show that glutamatergic cortical inputs establish distinct functional territories within the basal ganglia, and that neurons in each of these territories act upon other brain neuronal systems principally via a GABAergic disinhibitory output mechanism. The functional status of the various basal ganglia chemospecific systems was examined in animal models of neurodegenerative diseases, as well as in postmortem material from Parkinson's and Huntington's disease patients. The neurodegenerative processes at play in such conditions specifically target the most phylogenetically ancient components of the brain, including the substantia nigra and the striatum, and the marked involution of these brain structures is accompanied by severe motor and cognitive deficits. Studies of neural mechanisms involved in these akinetic and hyperkinetic disorders have led to a complete reevaluation of the current model of the functional organization of the basal ganglia in both health and disease. Key words: brain phylogeny, basal ganglia, neurotransmitters, neurodegenerative disorders.


SLEEP ◽  
2020 ◽  
Author(s):  
Jesus Pujol ◽  
Laura Blanco-Hinojo ◽  
Lluís Gallart ◽  
Luís Moltó ◽  
Gerard Martínez-Vilavella ◽  
...  

Abstract The brain is a functional unit made up of multi-level connected elements showing a pattern of synchronized activity that varies in different states. The wake-sleep cycle is a major variation of brain functional condition that is ultimately regulated by subcortical arousal- and sleep-promoting cell groups. We analyzed the evolution of functional MRI signal in the whole cortex and in a deep region including most sleep- and wake-regulating subcortical nuclei at loss of consciousness induced by the hypnotic agent propofol. Optimal data were obtained in 21 of the 30 healthy participants examined. A dynamic analysis of functional MRI time courses on a time-scale of seconds was conducted to characterize consciousness transition, and functional connectivity maps were generated to detail the anatomy of structures showing different dynamics. Inside the magnet, loss of consciousness was marked by the participants ceasing to move their hands. We observed activity synchronization after loss of consciousness within both the cerebral cortex and subcortical structures. However, the evolution of functional MRI signal was dissociated, showing a transient reduction of global cortico-subcortical coupling that was restored during the unconscious state. An exception to cortico-subcortical decoupling was a brain network related to self-awareness (i.e., the default mode network) that remained connected to subcortical brain structures. Propofol-induced unconsciousness is thus characterized by an initial, transitory dissociated synchronization at the largest scale of brain activity. Such cortico-subcortical decoupling and subsequent re-coupling may allow the brain to detach from waking activity and reorganize into a functionally distinct state.


Author(s):  
Svitlana Grygorieva

This article examines a model of family relations, namely the “mother-child” dyad, built on the basis of a study of the lateral profile of normo-typical adolescents and their mothers. Testing the position of postures (comparing the interlacing of the fingers, crossing the arms on the chest, aiming and applauding) revealed a highly significant inverse correlation for the leading eye. This suggests that there is a significant interaction between the structures of the brain of the mother and the child in the thalamus (visual hillocks). The asymmetry of the brain structures of the mother-child dyad indicates their difference in the style of processing sensory information. These differences give rise to the dominance of the pair in the leading hemisphere of the brain (left or right) and, accordingly, in the style of thinking, which does not coincide in this pair. Thus, the state of "reliable" attachment in the mother-child dyad depends on whether the mother is ready to accept a different way of thinking (reading and processing sensory information) in her child. Based on the physiological characteristics of the structure of the brain of the mother and child, we will consider the system of dependent personality behavior, caused by disorders of interaction and attachment.


1982 ◽  
Vol 2 (4) ◽  
pp. 481-486 ◽  
Author(s):  
Martin Ingvar ◽  
B. K. Siesjö

The influence of 70–80% N2O on local local cerebral glucose utilization (CMRg1) in the rat brain was studied with the [14C]deoxyglucose method in minimally restrained, spontaneously breathing animals 75 min following discontinuation of halothane anaesthesia. Nitrous oxide was found to have only small effects on local CMRg1 in the majority of the 25 structures analyzed. When corrections were made for a small difference in body temperature between nitrous oxide–breathing animals and those breathing air, nitrous oxide was found to significantly increase local CMRg1 in some subcortical structures by 15–25% (red nucleus, thalamus, geniculate bodies, and superior colliculus), and to decrease local CMRg1 in nucleus accumbens and sensorimotor cortex by comparable amounts. Thus, although nitrous oxide does not alter overall glucose utilization in the brain, it differentially affects CMRg1 in some brain structures.


Author(s):  
J.E. Johnson

Although neuroaxonal dystrophy (NAD) has been examined by light and electron microscopy for years, the nature of the components in the dystrophic axons is not well understood. The present report examines nucleus gracilis and cuneatus (the dorsal column nuclei) in the brain stem of aging mice.Mice (C57BL/6J) were sacrificed by aldehyde perfusion at ages ranging from 3 months to 23 months. Several brain areas and parts of other organs were processed for electron microscopy.At 3 months of age, very little evidence of NAD can be discerned by light microscopy. At the EM level, a few axons are found to contain dystrophic material. By 23 months of age, the entire nucleus gracilis is filled with dystrophic axons. Much less NAD is seen in nucleus cuneatus by comparison. The most recurrent pattern of NAD is an enlarged profile, in the center of which is a mass of reticulated material (reticulated portion; or RP).


2000 ◽  
Vol 5 (5) ◽  
pp. 4-5

Abstract Spinal cord (dorsal column) stimulation (SCS) and intraspinal opioids (ISO) are treatments for patients in whom abnormal illness behavior is absent but who have an objective basis for severe, persistent pain that has not been adequately relieved by other interventions. Usually, physicians prescribe these treatments in cancer pain or noncancer-related neuropathic pain settings. A survey of academic centers showed that 87% of responding centers use SCS and 84% use ISO. These treatments are performed frequently in nonacademic settings, so evaluators likely will encounter patients who were treated with SCS and ISO. Does SCS or ISO change the impairment associated with the underlying conditions for which these treatments are performed? Although the AMA Guides to the Evaluation of Permanent Impairment (AMA Guides) does not specifically address this question, the answer follows directly from the principles on which the AMA Guides impairment rating methodology is based. Specifically, “the impairment percents shown in the chapters that consider the various organ systems make allowance for the pain that may accompany the impairing condition.” Thus, impairment is neither increased due to persistent pain nor is it decreased in the absence of pain. In summary, in the absence of complications, the evaluator should rate the underlying pathology or injury without making an adjustment in the impairment for SCS or ISO.


Sign in / Sign up

Export Citation Format

Share Document