scholarly journals Structural and biochemical analyses of Caulobacter crescentus ParB reveal the role of its N-terminal domain in chromosome segregation

2019 ◽  
Author(s):  
Adam S. B. Jalal ◽  
César L. Pastrana ◽  
Ngat T. Tran ◽  
Clare. E. Stevenson ◽  
David M. Lawson ◽  
...  

ABSTRACTThe tripartite ParA-ParB-parS complex ensures faithful chromosome segregation in the majority of bacterial species. ParB nucleates on a centromere-like parS site and spreads to neighboring DNA to form a network of protein-DNA complexes. This nucleoprotein network interacts with ParA to partition the parS locus, hence the chromosome to each daughter cell. Here, we determine the co-crystal structure of a C-terminal domain truncated ParB-parS complex from Caulobacter crescentus, and show that its N-terminal domain adopts alternate conformations. The multiple conformations of the N-terminal domain might facilitate the spreading of ParB on the chromosome. Next, using ChIP-seq we show that ParBs from different bacterial species exhibit variation in their intrinsic capability for spreading, and that the N-terminal domain is a determinant of this variability. Finally, we show that the C-terminal domain of Caulobacter ParB possesses no or weak non-specific DNA-binding activity. Engineered ParB variants with enhanced non-specific DNA-binding activity condense DNA in vitro but do not spread further than wild-type in vivo. Taken all together, our results emphasize the role of the N-terminal domain in ParB spreading and faithful chromosome segregation in Caulobacter crescentus.

Blood ◽  
2008 ◽  
Vol 112 (4) ◽  
pp. 1056-1067 ◽  
Author(s):  
Mira T. Kassouf ◽  
Hedia Chagraoui ◽  
Paresh Vyas ◽  
Catherine Porcher

Abstract Dissecting the molecular mechanisms used by developmental regulators is essential to understand tissue specification/differentiation. SCL/TAL-1 is a basic helix-loop-helix transcription factor absolutely critical for hematopoietic stem/progenitor cell specification and lineage maturation. Using in vitro and forced expression experimental systems, we previously suggested that SCL might have DNA-binding–independent functions. Here, to assess the requirements for SCL DNA-binding activity in vivo, we examined hematopoietic development in mice carrying a germline DNA-binding mutation. Remarkably, in contrast to complete absence of hematopoiesis and early lethality in scl-null embryos, specification of hematopoietic cells occurred in homozygous mutant embryos, indicating that direct DNA binding is dispensable for this process. Lethality was forestalled to later in development, although some mice survived to adulthood. Anemia was documented throughout development and in adulthood. Cellular and molecular studies showed requirements for SCL direct DNA binding in red cell maturation and indicated that scl expression is positively autoregulated in terminally differentiating erythroid cells. Thus, different mechanisms of SCL's action predominate depending on the developmental/cellular context: indirect DNA binding activities and/or sequestration of other nuclear regulators are sufficient in specification processes, whereas direct DNA binding functions with transcriptional autoregulation are critically required in terminal maturation processes.


Development ◽  
1991 ◽  
Vol 113 (1) ◽  
pp. 245-255 ◽  
Author(s):  
M. Van Doren ◽  
H.M. Ellis ◽  
J.W. Posakony

In Drosophila, a group of regulatory proteins of the helix-loop-helix (HLH) class play an essential role in conferring upon cells in the developing adult epidermis the competence to give rise to sensory organs. Proteins encoded by the daughterless (da) gene and three genes of the achaete-scute complex (AS-C) act positively in the determination of the sensory organ precursor cell fate, while the extramacrochaetae (emc) and hairy (h) gene products act as negative regulators. In the region upstream of the achaete gene of the AS-C, we have identified three ‘E box’ consensus sequences that are bound specifically in vitro by hetero-oligomeric complexes consisting of the da protein and an AS-C protein. We have used this DNA-binding activity to investigate the biochemical basis of the negative regulatory function of emc. Under the conditions of our experiments, the emc protein, but not the h protein, is able to antagonize specifically the in vitro DNA-binding activity of da/AS-C and putative da/da protein complexes. We interpret these results as follows: the heterodimerization capacity of the emc protein (conferred by its HLH domain) allows it to act in vivo as a competitive inhibitor of the formation of functional DNA-binding protein complexes by the da and AS-C proteins, thereby reducing the effective level of their transcriptional regulatory activity within the cell.


1989 ◽  
Vol 9 (6) ◽  
pp. 2464-2476
Author(s):  
M Cockell ◽  
B J Stevenson ◽  
M Strubin ◽  
O Hagenbüchle ◽  
P K Wellauer

Footprint analysis of the 5'-flanking regions of the alpha-amylase 2, elastase 2, and trypsina genes, which are expressed in the acinar pancreas, showed multiple sites of protein-DNA interaction for each gene. Competition experiments demonstrated that a region from each 5'-flanking region interacted with the same cell-specific DNA-binding activity. We show by in vitro binding assays that this DNA-binding activity also recognizes a sequence within the 5'-flanking regions of elastase 1, chymotrypsinogen B, carboxypeptidase A, and trypsind genes. Methylation interference and protection studies showed that the DNA-binding activity recognized a bipartite motif, the subelements of which were separated by integral helical turns of DNA. The alpha-amylase 2 cognate sequence was found to enhance in vivo transcription of its own promoter in a cell-specific manner, which identified the DNA-binding activity as a transcription factor (PTF 1). The observation that PTF 1 bound to DNA sequences that have been defined as transcriptional enhancers by others suggests that this factor is involved in the coordinate expression of genes transcribed in the acinar pancreas.


2004 ◽  
Vol 85 (7) ◽  
pp. 2001-2013 ◽  
Author(s):  
Koen W. R. van Cleef ◽  
Wendy M. A. Scaf ◽  
Karen Maes ◽  
Suzanne J. F. Kaptein ◽  
Erik Beuken ◽  
...  

An intriguing feature of the rat cytomegalovirus (RCMV) genome is open reading frame (ORF) r127, which shows similarity to the rep genes of parvoviruses as well as the U94 genes of human herpesvirus type 6A (HHV-6A) and 6B (HHV-6B). Counterparts of these genes have not been found in other herpesviruses. Here, it is shown that the r127 gene is transcribed during the early and late phases of virus replication in vitro as an unspliced 1·1 kb transcript containing the complete r127 ORF. Transcripts of r127 were also detected in various organs of RCMV-infected rats at 1 week post-infection (p.i.), but only in the salivary gland at 4 months p.i. Using rabbit polyclonal antibodies raised against the r127-encoded protein (pr127), pr127 was found to be expressed as early as 12 h p.i. within the nuclei of RCMV-infected cells in vitro. Expression of pr127 was also observed within the nuclei of cells in various organs of RCMV-infected rats at 3 weeks p.i. Moreover, pr127 was demonstrated to bind single- as well as double-stranded DNA. Finally, an RCMV r127 deletion mutant (RCMVΔr127) was generated, in which the r127 ORF was disrupted. This deletion mutant, however, was shown to replicate with a similar efficiency as wild-type RCMV (wt RCMV), both in vitro and in vivo. Taken together, it is concluded that the RCMV r127 gene encodes a nuclear protein with single- and double-stranded DNA-binding activity that is dispensable for virus replication, not only in vitro, but also during the acute phase of infection in vivo.


2004 ◽  
Vol 279 (44) ◽  
pp. 45887-45896 ◽  
Author(s):  
Mark J. Demma ◽  
Serena Wong ◽  
Eugene Maxwell ◽  
Bimalendu Dasmahapatra

The p53 protein plays a major role in the maintenance of genome stability in mammalian cells. Mutations of p53 occur in over 50% of all cancers and are indicative of highly aggressive cancers that are hard to treat. Recently, there has been a high degree of interest in therapeutic approaches to restore growth suppression functions to mutant p53. Several compounds have been reported to restore wild type function to mutant p53. One such compound, CP-31398, has been shown effectivein vivo, but questions have arisen to whether it actually affects p53. Here we show that mutant p53, isolated from cells treated with CP-31398, is capable of binding to p53 response elementsin vitro. We also show the compound restores DNA-binding activity to mutant p53 in cells as determined by a chromatin immunoprecipitation assay. In addition, using purified p53 core domain from two different hotspot mutants (R273H and R249S), we show that CP-31398 can restore DNA-binding activity in a dose-dependent manner. Using a quantitative DNA binding assay, we also show that CP-31398 increases significantly the amount of mutant p53 that binds to cognate DNA (Bmax) and its affinity (Kd) for DNA. The compound, however, does not affect the affinity (Kdvalue) of wild type p53 for DNA and only increasesBmaxslightly. In a similar assay PRIMA1 does not have any effect on p53 core DNA-binding activity. We also show that CP-31398 had no effect on the DNA-binding activity of p53 homologs p63 and p73.


1989 ◽  
Vol 9 (6) ◽  
pp. 2464-2476 ◽  
Author(s):  
M Cockell ◽  
B J Stevenson ◽  
M Strubin ◽  
O Hagenbüchle ◽  
P K Wellauer

Footprint analysis of the 5'-flanking regions of the alpha-amylase 2, elastase 2, and trypsina genes, which are expressed in the acinar pancreas, showed multiple sites of protein-DNA interaction for each gene. Competition experiments demonstrated that a region from each 5'-flanking region interacted with the same cell-specific DNA-binding activity. We show by in vitro binding assays that this DNA-binding activity also recognizes a sequence within the 5'-flanking regions of elastase 1, chymotrypsinogen B, carboxypeptidase A, and trypsind genes. Methylation interference and protection studies showed that the DNA-binding activity recognized a bipartite motif, the subelements of which were separated by integral helical turns of DNA. The alpha-amylase 2 cognate sequence was found to enhance in vivo transcription of its own promoter in a cell-specific manner, which identified the DNA-binding activity as a transcription factor (PTF 1). The observation that PTF 1 bound to DNA sequences that have been defined as transcriptional enhancers by others suggests that this factor is involved in the coordinate expression of genes transcribed in the acinar pancreas.


2010 ◽  
Vol 192 (23) ◽  
pp. 6136-6142 ◽  
Author(s):  
Valentina Rippa ◽  
Angela Amoresano ◽  
Carla Esposito ◽  
Paolo Landini ◽  
Michael Volkert ◽  
...  

ABSTRACT Upon exposure to alkylating agents, Escherichia coli increases expression of aidB along with three genes (ada, alkA, and alkB) that encode DNA repair proteins. While the biological roles of the Ada, AlkA, and AlkB proteins have been defined, despite many efforts, the molecular functions of AidB remain largely unknown. In this study, we focused on the biological role of the AidB protein, and we demonstrated that AidB shows preferential binding to a DNA region that includes the upstream element of its own promoter, PaidB. The physiological significance of this specific interaction was investigated by in vivo gene expression assays, demonstrating that AidB can repress its own synthesis during normal cell growth. We also showed that the domain architecture of AidB is related to the different functions of the protein: the N-terminal region, comprising the first 439 amino acids (AidB “I-III”), possesses FAD-dependent dehydrogenase activity, while its C-terminal domain, corresponding to residues 440 to 541 (AidB “IV”), displays DNA binding activity and can negatively regulate the expression of its own gene in vivo. Our results define a novel role in gene regulation for the AidB protein and underline its multifunctional nature.


1995 ◽  
Vol 15 (10) ◽  
pp. 5552-5562 ◽  
Author(s):  
E Roulet ◽  
M T Armentero ◽  
G Krey ◽  
B Corthésy ◽  
C Dreyer ◽  
...  

The nuclear factor I (NFI) family consists of sequence-specific DNA-binding proteins that activate both transcription and adenovirus DNA replication. We have characterized three new members of the NFI family that belong to the Xenopus laevis NFI-X subtype and differ in their C-termini. We show that these polypeptides can activate transcription in HeLa and Drosophila Schneider line 2 cells, using an activation domain that is subdivided into adjacent variable and subtype-specific domains each having independent activation properties in chimeric proteins. Together, these two domains constitute the full NFI-X transactivation potential. In addition, we find that the X. laevis NFI-X proteins are capable of activating adenovirus DNA replication through their conserved N-terminal DNA-binding domains. Surprisingly, their in vitro DNA-binding activities are specifically inhibited by a novel repressor domain contained within the C-terminal part, while the dimerization and replication functions per se are not affected. However, inhibition of DNA-binding activity in vitro is relieved within the cell, as transcriptional activation occurs irrespective of the presence of the repressor domain. Moreover, the region comprising the repressor domain participates in transactivation. Mechanisms that may allow the relief of DNA-binding inhibition in vivo and trigger transcriptional activation are discussed.


1993 ◽  
Vol 293 (3) ◽  
pp. 769-774 ◽  
Author(s):  
W W Zhang ◽  
M Yaneva

The Ku protein, a DNA-binding complex that is composed of two subunits of 70 kDa and of 86 kDa, has been suggested to play a role in gene transcription. The dependence of the in vitro DNA-binding activity of affinity-purified Ku protein on reduced cysteine residues has been studied using sulphydryl-modifying agents. Inhibition of the DNA-binding activity was caused by alkylation with N-ethylmaleimide and by crosslinking with azadicarboxylic acid bis(dimethylamide). Treatment of the protein with a large excess of N-ethylmaleimide after it had bound to DNA did not completely dissociate the complex from the DNA, suggesting that some cysteines may be in direct contact with DNA. Pre-incubation of the protein at 37 degrees C or above caused rapid inactivation of DNA binding. The elevated temperature azadicarboxylic acid bis(dimethylamide) treatments resulted in the formation of a crosslinked product, which was detected by Western blotting. The effects of azadicarboxylic acid bis(dimethylmaleimide) and heat were completely reversible by treatment with a reducing agent, such as dithiothreitol. These results demonstrate that in vitro DNA-binding activity of the Ku protein requires reduced sulphydryl groups. Interestingly, the DNA-binding activity of Ku protein was protected from heat inactivation by the presence of a HeLa cell nuclear extract, suggesting that a nuclear factor or factors may be responsible for the maintenance of the reduced cysteines of the Ku protein in vivo. Thus, the biochemical function of the Ku protein may be regulated through oxidation-reduction of its cysteine residues.


2000 ◽  
Vol 20 (15) ◽  
pp. 5540-5553 ◽  
Author(s):  
Yue Liu ◽  
April L. Colosimo ◽  
Xiang-Jiao Yang ◽  
Daiqing Liao

ABSTRACT The adenovirus E1B 55-kDa protein binds to cellular tumor suppressor p53 and inactivates its transcriptional transactivation function. p53 transactivation activity is dependent upon its ability to bind to specific DNA sequences near the promoters of its target genes. It was shown recently that p53 is acetylated by transcriptional coactivators p300, CREB bidning protein (CBP), and PCAF and that acetylation of p53 by these proteins enhances p53 sequence-specific DNA binding. Here we show that the E1B 55-kDa protein specifically inhibits p53 acetylation by PCAF in vivo and in vitro, while acetylation of histones and PCAF autoacetylation is not affected. Furthermore, the DNA-binding activity of p53 is diminished in cells expressing the E1B 55-kDa protein. PCAF binds to the E1B 55-kDa protein and to a region near the C terminus of p53 encompassing Lys-320, the specific PCAF acetylation site. We further show that the E1B 55-kDa protein interferes with the physical interaction between PCAF and p53, suggesting that the E1B 55-kDa protein inhibits PCAF acetylase function on p53 by preventing enzyme-substrate interaction. These results underscore the importance of p53 acetylation for its function and suggest that inhibition of p53 acetylation by viral oncoproteins prevent its activation, thereby contributing to viral transformation.


Sign in / Sign up

Export Citation Format

Share Document