scholarly journals ER transmembrane protein TMTC3 contributes to O-mannosylation of E-cadherin, Cellular Adherence and Embryonic Gastrulation

2019 ◽  
Author(s):  
Jill B. Graham ◽  
Johan C. Sunryd ◽  
Ketan Mathavan ◽  
Emma Weir ◽  
Ida Signe Bohse Larsen ◽  
...  

AbstractProtein glycosylation plays essential roles in protein structure, stability and activity such as cell adhesion. The cadherin superfamily of adhesion molecules carry O-linked mannose glycans at conserved sites and it was recently demonstrated that the TMTC1-4 genes contribute to the addition of these O-linked mannoses. Here, biochemical, cell biological and organismal analysis was used to determine that TMTC3 supports the O-mannosylation of E-cadherin, cellular adhesion and embryonic gastrulation. Using genetically engineered cells lacking all four TMTC genes, overexpression of TMTC3 rescued O-linked glycosylation of E-cadherin and cell adherence. The knockdown of the Tmtcs in Xenopus laevis embryos caused a delay in gastrulation that was rescued by the addition of human TMTC3. Mutations in TMTC3 have been linked to neuronal cell migration diseases including Cobblestone lissencephaly. Analysis of TMTC3 mutations associated with Cobblestone lissencephaly found that three of the variants exhibit reduced stability and missence mutations were unable to complement TMTC3 rescue of gastrulation in Xenopus embryo development. Our study demonstrates that TMTC3 regulates O-linked glycosylation and cadherin-mediated adherence, providing insight into its effect on cellular adherence and migration, as well the basis of TMTC3-associated Cobblestone lissencephaly.

2016 ◽  
Vol 39 (3) ◽  
pp. 815-826 ◽  
Author(s):  
Nour Alowayed ◽  
Madhuri S. Salker ◽  
Ni Zeng ◽  
Yogesh Singh ◽  
Florian Lang

Background: LEFTY2, a suppressor of cell proliferation, tumor growth, regulator of stemness and embryonic differentiation, is a negative regulator of cancer cell reprogramming. Malignant transformation may lead to migration requiring loss of adhesion and gain of migratory activity. Signaling involved in the orchestration of migration, proliferation and spreading of cells include focal adhesion kinase (FAK) and adhesion molecule E-cadherin. Aims: The present study explored whether LEFTY2 influences the proliferation marker MKi67, FAK activity, E-cadherin abundance and migration of Ishikawa human endometrial carcinoma cells. Moreover, the study explored the involvement of microRNA-200a (miR-200a), which is known to regulate cellular adhesion by targeting E-Cadherin. Methods: FAK activity was estimated from FAK phosphorylation quantified by Western blotting, migration utilizing a wound healing assay, miR-200a and MKi67 expression levels utilizing qRT-PCR, cell proliferation and apoptosis using BrdU and Annexin V staining, respectively, and E-Cadherin (E-Cad) abundance, using confocal microscopy. Results: LEFTY2 (25 ng/ml, 48 hours) treatment was followed by decrease of MKi67 expression, FAK activity and migration. LEFTY2 upregulated miRNA-200a and E-Cad protein level in Ishikawa cells. The effect of LEFTY2 on migration was mimicked by FAK inhibitor PF 573228 (50 µM). Addition of LEFTY2 in the presence of PF-573228 did not result in a further significant decline of migration. Conclusion: In conclusion, LEFTY2 down-regulates MKi67 expression and FAK activity, up-regulates miR-200a and E-cadherin, and is thus a powerful negative regulator of endometrial cell proliferation and migration.


2018 ◽  
Vol 2 (3) ◽  
pp. 184-201
Author(s):  
George D Glinos ◽  
Irena Pastar ◽  
Marjana Tomic-Canic ◽  
Rivka C Stone

Darier disease (DD) is an autosomal dominant keratinizing genodermatosis that manifests clinically with red-brown pruritic papules in a seborrheic distribution often in association with palmoplantar pits and dystrophic nail changes. It is caused by mutation in ATP2A2 which encodes a sarco/endoplasmic reticulum calcium ATPase isoform 2 (SERCA2) pump that regulates calcium flux. Consequent alteration of intracellular calcium homeostasis is thought to impair trafficking of cellular adhesion proteins and to lead to aberrant keratinocyte differentiation, contributing to the characteristic histopathologic features of acantholysis and dyskeratosis in DD, though the precise mechanisms are incompletely understood. Previous studies have identified defective localization of desmosomal attachment proteins in skin biopsies and cultured keratinocytes from DD patients, but reports of effects on adherens junction proteins (including calcium-dependent E-cadherin) are conflicting. Here we describe a case of DD presenting with characteristic clinical and histologic features in which we performed immunofluorescence staining of four adherens junction-associated proteins (E-cadherin, α-catenin, β-catenin, and vinculin). In lesional (acantholytic) DD skin, we identified loss of distinctive bright membranous staining that was present at the periphery of keratinocytes throughout the epidermis in the healthy skin of a matched donor. Perilesional (non-acantholytic) portions of DD skin partially recapitulated the normal phenotype. Our findings support a role for SERCA2 dysfunction in impaired assembly of adherens junctions, which together with defective desmosomes contribute to acantholysis in DD.


2021 ◽  
Author(s):  
Shachar Sherman ◽  
Koichi Kawakami ◽  
Herwig Baier

The brain is assembled during development by both innate and experience-dependent mechanisms1-7, but the relative contribution of these factors is poorly understood. Axons of retinal ganglion cells (RGCs) connect the eye to the brain, forming a bottleneck for the transmission of visual information to central visual areas. RGCs secrete molecules from their axons that control proliferation, differentiation and migration of downstream components7-9. Spontaneously generated waves of retinal activity, but also intense visual stimulation, can entrain responses of RGCs10 and central neurons11-16. Here we asked how the cellular composition of central targets is altered in a vertebrate brain that is depleted of retinal input throughout development. For this, we first established a molecular catalog17 and gene expression atlas18 of neuronal subpopulations in the retinorecipient areas of larval zebrafish. We then searched for changes in lakritz (atoh7-) mutants, in which RGCs do not form19. Although individual forebrain-expressed genes are dysregulated in lakritz mutants, the complete set of 77 putative neuronal cell types in thalamus, pretectum and tectum are present. While neurogenesis and differentiation trajectories are overall unaltered, a greater proportion of cells remain in an uncommitted progenitor stage in the mutant. Optogenetic stimulation of a pretectal area20,21 evokes a visual behavior in blind mutants indistinguishable from wildtype. Our analysis shows that, in this vertebrate visual system, neurons are produced more slowly, but specified and wired up in a proper configuration in the absence of any retinal signals.


2018 ◽  
Vol 9 (4) ◽  
pp. 74 ◽  
Author(s):  
Diana Sequeira ◽  
Catarina Seabra ◽  
Paulo Palma ◽  
Ana Cardoso ◽  
João Peça ◽  
...  

Background: The development of materials with bioregenerative properties is critically important for vital pulp therapies and regenerative endodontic procedures. The aim of this study was to evaluate the cytocompatibility and cytotoxicity of a new endodontic biomaterial, PulpGuard, in comparison with two other biomaterials widely used in endodontic procedures, ProRoot Mineral Trioxide Aggregate (MTA) and Biodentine. Methods: Apical papilla cells (APCs) were isolated from third molars with incomplete rhizogenesis from patients with orthodontic indication for dental extraction. Cultured APCs were incubated for 24, 48, or 72 h with different dilutions of eluates prepared from the three materials. Cellular viability, mobility, and proliferation were assessed in vitro using the Alamar Blue assay and a wound-healing test. The cells were also cultured in direct contact with the surface of each material. These were then analyzed via Scanning Electron Microscopy (SEM), and the surface chemical composition was determined by Energy-Dispersive Spectroscopy (EDS). Results: Cells incubated in the presence of eluates extracted from ProRoot MTA and PulpGuard presented rates of viability comparable to those of control cells; in contrast, undiluted Biodentine eluates induced a significant reduction of cellular viability. The wound-healing assay revealed that eluates from ProRoot MTA and PulpGuard allowed for unhindered cellular migration and proliferation. Cellular adhesion was observed on the surface of all materials tested. Consistent with their disclosed composition, EDS analysis found high relative abundance of calcium in Biodentine and ProRoot MTA and high abundance of silicon in PulpGuard. Significant amounts of zinc and calcium were also present in PulpGuard discs. Concerning solubility, Biodentine and ProRoot MTA presented mild weight loss after eluate extraction, while PulpGuard discs showed significant water uptake. Conclusions: PulpGuard displayed a good in vitro cytocompatibility profile and did not significantly affect the proliferation and migration rates of APCs. Cells cultured in the presence of PulpGuard eluates displayed a similar profile to those cultured with eluates from the widely used endodontic cement ProRoot MTA.


Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1781
Author(s):  
Beatrix Péter ◽  
Imre Boldizsár ◽  
Gábor M. Kovács ◽  
Anna Erdei ◽  
Zsuzsa Bajtay ◽  
...  

Plants and fungi can be used for medical applications because of their accumulation of special bioactive metabolites. These substances might be beneficial to human health, exerting also anti-inflammatory and anticancer (antiproliferative) effects. We propose that they are mediated by influencing cellular adhesion and migration via various signaling pathways and by directly inactivating key cell adhesion surface receptor sites. The evidence for this proposition is reviewed (by summarizing the natural metabolites and their effects influencing cellular adhesion and migration), along with the classical measuring techniques used to gain such evidence. We systematize existing knowledge concerning the mechanisms of how natural metabolites affect adhesion and movement, and their role in gene expression as well. We conclude by highlighting the possibilities to screen natural compounds faster and more easily by applying new label-free methods, which also enable a far greater degree of quantification than the conventional methods used hitherto. We have systematically classified recent studies regarding the effects of natural compounds on cellular adhesion and movement, characterizing the active substances according to their organismal origin (plants, animals or fungi). Finally, we also summarize the results of recent studies and experiments on SARS-CoV-2 treatments by natural extracts affecting mainly the adhesion and entry of the virus.


2012 ◽  
Vol 92 (4) ◽  
pp. 1577-1617 ◽  
Author(s):  
Kenneth B. Gagnon ◽  
Eric Delpire

SPAK (Ste20-related proline alanine rich kinase) and OSR1 (oxidative stress responsive kinase) are members of the germinal center kinase VI subfamily of the mammalian Ste20 (Sterile20)-related protein kinase family. Although there are 30 enzymes in this protein kinase family, their conservation across the fungi, plant, and animal kingdom confirms their evolutionary importance. Already, a large volume of work has accumulated on the tissue distribution, binding partners, signaling cascades, and physiological roles of mammalian SPAK and OSR1 in multiple organ systems. After reviewing this basic information, we will examine newer studies that demonstrate the pathophysiological consequences to SPAK and/or OSR1 disruption, discuss the development and analysis of genetically engineered mouse models, and address the possible role these serine/threonine kinases might have in cancer proliferation and migration.


2004 ◽  
Vol 15 (1) ◽  
pp. 397-406 ◽  
Author(s):  
Sanita Bharti ◽  
Heike Handrow-Metzmacher ◽  
Silvia Zickenheiner ◽  
Andreas Zeitvogel ◽  
Rudolf Baumann ◽  
...  

While searching for potential candidate molecules relevant for the pathogenesis of endometriosis, we discovered a 2910-base pair cDNA encoding a novel putative 411-amino acid integral membrane protein that we called shrew-1. The putative open-reading frame was confirmed with antibodies against shrew-1 peptides that labeled a protein of ∼48 kDa in extracts of shrew-1 mRNA-positive tissue and also detected ectopically expressed shrew-1. Expression of epitope-tagged shrew-1 in epithelial cells and analysis by surface biotinylation and immunoblots demonstrated that shrew-1 is indeed a transmembrane protein. Shrew-1 is able to target to E-cadherin-mediated adherens junctions and interact with the E-cadherin–catenin complex in polarized MCF7 and Madin-Darby canine kidney cells, but not with the N-cadherin–catenin complex in nonpolarized epithelial cells. Direct interaction of shrew-1 with β-catenin in in vitro pull-down assay suggests that β-catenin might be one of the proteins that targets and/or retains shrew-1 in the adherens junctions. Interestingly, shrew-1 was partially translocated in response to scatter factor (ligand of receptor tyrosine kinase c-met) from the plasma membrane to the cytoplasm where it still colocalized with endogenous E-cadherin. In summary, we introduce shrew-1 as a novel component of adherens junctions, interacting with E-cadherin–β-catenin complexes in polarized epithelial cells.


2021 ◽  
Vol 11 (12) ◽  
pp. 2329-2336
Author(s):  
Qiang Zeng ◽  
Yiting Luo

In order to explore effects of long-chain non-coding ribonucleic acid (RNA) HOTAIR on proliferation and migration of human lens epithelial cells, SRA01/04 cells were selected as the research strain in this study and divided into S1 group (no HOTAIR transfection), S2 group (siHOTAIR transfection), S3 group (siHOTAIR+10 ng/mL TGF-β2), and S4 group (no HOTAIR transfection+10 ng/mL TGF-β2) according to the presence or absence of transforming growth factor (TGF)-β2 and silent HOTAIR treatment. 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide (MTT) colorimetric method was applied to detect cell proliferation.Western blot was used for detection of E-cadherin, zonula occluden-1 (ZO-1), Vimentin, α-smooth muscle actin (SMA), Snail, Slug, zinc finger E-box binding homeobox 1 (ZEB1), and Smad-2 expressions. Results showed that the number of transmembrane cells in S4 group was higher markedly than that of the other groups, but that of S2 group dropped steeply compared with the other groups (P <0.05); E-cadherin (2.59±0.58) and ZO-1 (1.95±0.56) of S2 group increased hugely compared with the other groups, while Vimentin (0.57±0.14) and α-SMA (0.64±0.28) decreased sharply compared with the other groups (P < 0.05); Snail (2.51±0.59), Slug (2.11±0.47), and ZEB1 (2.83±0.53) of S4 group rose obviously compared with the other groups, but the above of S2 group reduced hugely compared with the other groups (P < 0.05); pSmad-2 and pSmad-3 of S4 group elevated greatly compared with the other groups, and those of S2 group reduced hugely compared with the other groups (P < 0.05). In conclusion, HOTAIR high expression could promote TGF-β2-induced SRA01/04 cell proliferation, migration, invasion, and epithelial-mesenchymal trans-differentiation, which was related to TGF-β/Smad signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document