scholarly journals Pericyte-Like Cells Undergo Transcriptional Reprogramming and Distinct Functional Adaptations in Acute Lung Injury

2019 ◽  
Author(s):  
CF Hung ◽  
S Holton ◽  
YH Chow ◽  
WC Liles ◽  
SA Gharib ◽  
...  

AbstractBackgroundWe previously reported on the role of pericyte-like cells as functional sentinel immune cells in lung injury. However, much about the biological role of pericytes in lung injury remains unknown. Lung pericyte-like cells are well-positioned to sense disruption to the epithelial barrier and coordinate local inflammatory responses due to their anatomic niche within the alveoli. In this report, we characterized transcriptional responses and functional changes in pericyte-like cells following activation by alveolar components from injured and uninjured lungs in a mouse model of acute lung injury (ALI).MethodsWe purified pericyte-like cells from lung digests using PDGFRβ as a selection marker and expanded them in culture as previously described (1). We induced sterile acute lung injury in mice with recombinant human Fas ligand (rhFasL) instillation followed by mechanical ventilation (1). We then collected bronchoalveolar lavage fluid (BALF) from injured and uninjured mice. Purified pericyte-like cells in culture were exposed to growth media only (control), BALF from uninjured mice, and BALF from injured mice for 6 and 24 h. RNA collected from these treatment conditions were processed for RNAseq. Targets of interest identified by pathway analysis were validated using in vitro and in vivo assays.ResultsWe observed robust global transcriptional changes in pericyte-like cells following treatment with uninjured and injured BALF at 6 h, but this response persisted for 24 h only after exposure to injured BALF. Functional enrichment analysis of pericytes treated with injured BALF revealed activation of immuno-inflammatory, cell migration and angiogenesis-related pathways, whereas processes associated with tissue development and remodeling were down-regulated. We validated select targets in the inflammatory, angiogenesis-related, and cell migratory pathways using functional biological assays in vitro and in vivo.ConclusionLung pericyte-like cells are highly responsive to alveolar compartment content from both uninjured and injured lungs, but injured BALF elicits a more sustained response. The inflammatory, angiogenic, and migratory changes exhibited by activated pericyte-like cells underscore the phenotypic plasticity of these specialized stromal cells in the setting of acute lung injury.

2012 ◽  
Vol 32 (suppl_1) ◽  
Author(s):  
Thomas Helbing ◽  
Elena Ketterer ◽  
Bianca Engert ◽  
Jennifer Heinke ◽  
Sebastian Grundmann ◽  
...  

Introduction: Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome, are associated with high morbidity and mortality in patients. During the progression of ALI, the endothelial cell barrier of the pulmonary vasculature becomes compromised, leading to pulmonary edema, a characteristic feature of ALI. It is well-established that EC barrier dysfunction is initiated by cytoskeletal remodeling, which leads to disruption of cell-cell contacts and formation of paracellular gaps, allowing penetration of protein-rich fluid and inflammatory cells. Bone morphogenetic proteins (BMPs) are important players in endothelial dysfunction and inflammation but their effects on endothelial permeability in ALI have not been investigated until now. Methods and Results: As a first approach to assess the role of BMPs in acute lung injury we analysed BMP4 and BMPER expression in an infectious (LPS) and a non-infectious (bleomycin) mouse models of acute lung injury. In both models BMP4 and BMPER protein expression levels were reduced demonstrated by western blots, suggesting that BMPs are involved in progression ALI. To assess the role of BMPs on vascular leakage, a key feature of ALI, BMP activity in mice was inhibited by i.p. administration of LDN193189, a small molecule that blocks BMP signalling. After 3 days Evans blue dye (EVB) was administered i.v. and dye extravasation into the lungs was quantified as a marker for vascular leakage. Interestingly, LDN193189 significantly increased endothelial permeability compared to control lungs, indicating that BMP signaling is involved in maintenance of endothelial barrier function. To quantify effects of BMP inhibition on endothelial barrier function in vitro, HUVECs were seeded onto transwell filters and were exposed to LDN193189. After 3 days FITC-dextrane was added and passage into the lower chamber was quantified as a marker for endothelial barrier function. Thrombin served as a positive control. As expected from our in vivo experiments inhibition of BMP signaling by LDN193189 enhanced FITC-dextrane passage. To study specific effects of BMPs on endothelial barrier function, two protagonist of the BMP family, BMP2 and BMP4, or BMP modulator BMPER were tested in the transwell assay in vitro. Interestingly BMP4 and BMPER, but not BMP2, reduced FITC-dextrane passage demonstrating that BMP4 and BMPER improved endothelial barrier function. Vice versa, specific knock down of BMP4 or BMPER increased leakage in transwell assays. Im immuncytochemistry silencing of BMPER or BMP4 induced hyperpermeability as a consequence of a pro-inflammatory endothelial phenotype characterised by reduced cell-cell contacts and increased actin stress fiber formation. Additionally, the pro-inflammatory endothelial phenotype was confirmed by real-time revealing increased expression of adhesion molecules ICAM-1 or proinflammatory cytokines such as IL-6 and IL-8 in endothelial cells after BMPER or BMP4 knock down. Confirming these in vitro results BMPER +/- mice exhibit increased extravasation of EVB into the lungs, indicating that partial loss of BMPER impairs endothelial barrier function in vitro and in vivo. Conclusion: We identify BMPER and BMP4 as local regulators of vascular permeability. Both are protective for endothelial barrier function and may open new therapeutic avenues in the treatment of acute lung injury.


2013 ◽  
Vol 305 (11) ◽  
pp. L844-L855 ◽  
Author(s):  
Ming-Yuan Jian ◽  
Mikhail F. Alexeyev ◽  
Paul E. Wolkowicz ◽  
Jaroslaw W. Zmijewski ◽  
Judy R. Creighton

Acute lung injury secondary to sepsis is a leading cause of mortality in sepsis-related death. Present therapies are not effective in reversing endothelial cell dysfunction, which plays a key role in increased vascular permeability and compromised lung function. AMP-activated protein kinase (AMPK) is a molecular sensor important for detection and mediation of cellular adaptations to vascular disruptive stimuli. In this study, we sought to determine the role of AMPK in resolving increased endothelial permeability in the sepsis-injured lung. AMPK function was determined in vivo using a rat model of endotoxin-induced lung injury, ex vivo using the isolated lung, and in vitro using cultured rat pulmonary microvascular endothelial cells (PMVECs). AMPK stimulation using N1-(α-d-ribofuranosyl)-5-aminoimidizole-4-carboxamide or metformin decreased the LPS-induced increase in permeability, as determined by filtration coefficient ( Kf) measurements, and resolved edema as indicated by decreased wet-to-dry ratios. The role of AMPK in the endothelial response to LPS was determined by shRNA designed to decrease expression of the AMPK-α1 isoform in capillary endothelial cells. Permeability, wounding, and barrier resistance assays using PMVECs identified AMPK-α1 as the molecule responsible for the beneficial effects of AMPK in the lung. Our findings provide novel evidence for AMPK-α1 as a vascular repair mechanism important in the pulmonary response to sepsis and identify a role for metformin treatment in the management of capillary injury.


2009 ◽  
Vol 77 (5) ◽  
pp. 2065-2075 ◽  
Author(s):  
Chanez Chemani ◽  
Anne Imberty ◽  
Sophie de Bentzmann ◽  
Maud Pierre ◽  
Michaela Wimmerová ◽  
...  

ABSTRACT Pseudomonas aeruginosa is a frequently encountered pathogen that is involved in acute and chronic lung infections. Lectin-mediated bacterium-cell recognition and adhesion are critical steps in initiating P. aeruginosa pathogenesis. This study was designed to evaluate the contributions of LecA and LecB to the pathogenesis of P. aeruginosa-mediated acute lung injury. Using an in vitro model with A549 cells and an experimental in vivo murine model of acute lung injury, we compared the parental strain to lecA and lecB mutants. The effects of both LecA- and Lec B-specific lectin-inhibiting carbohydrates (α-methyl-galactoside and α-methyl-fucoside, respectively) were evaluated. In vitro, the parental strain was associated with increased cytotoxicity and adhesion on A549 cells compared to the lecA and lecB mutants. In vivo, the P. aeruginosa-induced increase in alveolar barrier permeability was reduced with both mutants. The bacterial burden and dissemination were decreased for both mutants compared with the parental strain. Coadministration of specific lectin inhibitors markedly reduced lung injury and mortality. Our results demonstrate that there is a relationship between lectins and the pathogenicity of P. aeruginosa. Inhibition of the lectins by specific carbohydrates may provide new therapeutic perspectives.


2021 ◽  
Vol 11 ◽  
Author(s):  
Chun-Ping Liu ◽  
Jian-Xing Liu ◽  
Jiangyong Gu ◽  
Fang Liu ◽  
Jin-Hua Li ◽  
...  

Caffeoylquinic acids, coumarins and dicaffeoyl derivatives are considered to be three kinds of the most abundant bioactive components in Sarcandra glabra, an anti-inflammatory herb mainly found in Southern Asia. The combined anti-inflammatory effect of three typical constituents C + R + I (chlorogenic acid + rosmarinic acid + isofraxidin) from this plant has been investigated. The result implies that targeting the MAPK-NF-κB pathway would be one of the major mechanisms involved, using LPS stimulated RAW 264.7 cells as in vitro model and LPS-induced acute lung injury in mice as in vivo model. C + R + I can significantly suppress the levels of nitric oxide (NO), pro-inflammatory cytokines, and inhibit iNOS and COX-2 expression in LPS-treated RAW264.7 macrophage cells. Western blot analysis showed that C + R + I suppressed phosphorylation of NF-κB and MAPK, including phosphorylation of p65-NF-κB, IKB, ERK, JNK and P38. Besides, C + R + I suppressed MPO protein expression, but promoted SOD and HO-1 expression, and the related targets for C, R, and I were also predicted by molecular docking. This indicated that C + R + I could alleviate oxidative stress induced by LPS, which were further verified in the in vivo model of mice with acute lung injury through the measurement of corresponding inflammatory mediators and the analysis of immunehistochemistry.


2021 ◽  
Vol 49 (2) ◽  
pp. 030006052098635
Author(s):  
Qi Gao ◽  
Ningqing Chang ◽  
Donglian Liu

Objectives To investigate the mechanisms underlying the protective effect of sufentanil against acute lung injury (ALI). Material and Methods Rats were administered lipopolysaccharide (LPS) by endotracheal instillation to establish a model of ALI. LPS was used to stimulate BEAS-2B cells. The targets and promoter activities of IκB were assessed using a luciferase reporter assay. Apoptosis of BEAS-2B cells was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling. Results Sufentanil treatment markedly reduced pathological changes in lung tissue, pulmonary edema and secretion of inflammatory factors associated with ALI in vivo and in vitro. In addition, sufentanil suppressed apoptosis induced by LPS and activated NF-κB both in vivo and in vitro. Furthermore, upregulation of high mobility group box protein 1 (HMGB1) protein levels and downregulation of miR-129-5p levels were observed in vivo and in vitro following sufentanil treatment. miR-129-5p targeted the 3ʹ untranslated region and its inhibition decreased promoter activities of IκB-α. miR-129-5p inhibition significantly weakened the protective effect of sufentanil on LPS-treated BEAS-2B cells. Conclusion Sufentanil regulated the miR-129-5p/HMGB1 axis to enhance IκB-α expression, suggesting that sufentanil represents a candidate drug for ALI protection and providing avenues for clinical treatment.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1731
Author(s):  
Yu Maw Htwe ◽  
Huashan Wang ◽  
Patrick Belvitch ◽  
Lucille Meliton ◽  
Mounica Bandela ◽  
...  

Lung endothelial dysfunction is a key feature of acute lung injury (ALI) and clinical acute respiratory distress syndrome (ARDS). Previous studies have identified the lipid-generating enzyme, group V phospholipase A2 (gVPLA2), as a mediator of lung endothelial barrier disruption and inflammation. The current study aimed to determine the role of gVPLA2 in mediating lung endothelial responses to methicillin-resistant Staphylococcus aureus (MRSA, USA300 strain), a major cause of ALI/ARDS. In vitro studies assessed the effects of gVPLA2 inhibition on lung endothelial cell (EC) permeability after exposure to heat-killed (HK) MRSA. In vivo studies assessed the effects of intratracheal live or HK-MRSA on multiple indices of ALI in wild-type (WT) and gVPLA2-deficient (KO) mice. In vitro, HK-MRSA increased gVPLA2 expression and permeability in human lung EC. Inhibition of gVPLA2 with either the PLA2 inhibitor, LY311727, or with a specific monoclonal antibody, attenuated the barrier disruption caused by HK-MRSA. LY311727 also reduced HK-MRSA-induced permeability in mouse lung EC isolated from WT but not gVPLA2-KO mice. In vivo, live MRSA caused significantly less ALI in gVPLA2 KO mice compared to WT, findings confirmed by intravital microscopy assessment in HK-MRSA-treated mice. After targeted delivery of gVPLA2 plasmid to lung endothelium using ACE antibody-conjugated liposomes, MRSA-induced ALI was significantly increased in gVPLA2-KO mice, indicating that lung endothelial expression of gVPLA2 is critical in vivo. In summary, these results demonstrate an important role for gVPLA2 in mediating MRSA-induced lung EC permeability and ALI. Thus, gVPLA2 may represent a novel therapeutic target in ALI/ARDS caused by bacterial infection.


2020 ◽  
Vol 8 (S1) ◽  
Author(s):  
Tamara Merz ◽  
Nicole Denoix ◽  
Martin Wepler ◽  
Holger Gäßler ◽  
David A. C. Messerer ◽  
...  

AbstractThis review addresses the plausibility of hydrogen sulfide (H2S) therapy for acute lung injury (ALI) and circulatory shock, by contrasting the promising preclinical results to the present clinical reality. The review discusses how the narrow therapeutic window and width, and potentially toxic effects, the route, dosing, and timing of administration all have to be balanced out very carefully. The development of standardized methods to determine in vitro and in vivo H2S concentrations, and the pharmacokinetics and pharmacodynamics of H2S-releasing compounds is a necessity to facilitate the safety of H2S-based therapies. We suggest the potential of exploiting already clinically approved compounds, which are known or unknown H2S donors, as a surrogate strategy.


2004 ◽  
Vol 287 (2) ◽  
pp. L448-L453 ◽  
Author(s):  
Thomas Geiser ◽  
Masanobu Ishigaki ◽  
Coretta van Leer ◽  
Michael A. Matthay ◽  
V. Courtney Broaddus

Reactive oxygen species (ROS) are released into the alveolar space and contribute to alveolar epithelial damage in patients with acute lung injury. However, the role of ROS in alveolar repair is not known. We studied the effect of ROS in our in vitro wound healing model using either human A549 alveolar epithelial cells or primary distal lung epithelial cells. We found that H2O2 inhibited alveolar epithelial repair in a concentration-dependent manner. At similar concentrations, H2O2 also induced apoptosis, an effect seen particularly at the edge of the wound, leading us to hypothesize that apoptosis contributes to H2O2-induced inhibition of wound repair. To learn the role of apoptosis, we blocked caspases with the pan-caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp (zVAD). In the presence of H2O2, zVAD inhibited apoptosis, particularly at the wound edge and, most importantly, maintained alveolar epithelial wound repair. In H2O2-exposed cells, zVAD also maintained cell viability as judged by improved cell spreading and/or migration at the wound edge and by a more normal mitochondrial potential difference compared with cells not treated with zVAD. In conclusion, H2O2 inhibits alveolar epithelial wound repair in large part by induction of apoptosis. Inhibition of apoptosis can maintain wound repair and cell viability in the face of ROS. Inhibiting apoptosis may be a promising new approach to improve repair of the alveolar epithelium in patients with acute lung injury.


Sign in / Sign up

Export Citation Format

Share Document