scholarly journals Transient depletion of xDnmt1 leads to premature gene activation in Xenopus embryos

2000 ◽  
Vol 14 (3) ◽  
pp. 313-327 ◽  
Author(s):  
Irina Stancheva ◽  
Richard R. Meehan

In Xenopus laevis zygotic transcription begins at the midblastula transition (MBT). Prior to this the genome is organized into chromatin that facilitates rapid cycles of DNA replication but not transcription. Here we demonstrate that DNA methylation contributes to the overall transcriptional silencing before MBT. Transient depletion of the maternal DNA methyltransferase (xDnmt1) by anti sense RNA during cleavage stages is associated with a decrease in the genomic 5-methyl-cytosine content and leads to the activation of zygotic transcription approximately two cell cycles earlier than normal. Hypomethylation allows the early expression of mesodermal marker genes such as Xbra, Cerberus, and Otx2, which are subsequently down-regulated during gastrulation of thexDnmt1-depleted embryos. The temporal switch in gene expression may account for the appearance of body plan defects that we observe. Loss of xDnmt1 can be rescued by the coinjection of mouse or human Dnmt1 protein. These results demonstrate that DNA methylation has a role in the regulation of immediately early genes in Xenopusat MBT.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexandra Depincé ◽  
Pierre-Yves Le Bail ◽  
Charlène Rouillon ◽  
Catherine Labbé

AbstractReducing the variability in nuclear transfer outcome requires a better understanding of its cellular and epigenetic determinants, in order to ensure safer fish regeneration from cryobanked somatic material. In this work, clones from goldfish were obtained using cryopreserved fin cells as donor and non-enucleated oocytes as recipients. We showed that the high variability of clones survival was not correlated to spawn quality. Clones were then characterized for their first cleavages pattern in relation to their developmental fate up to hatching. The first cell cycle duration was increased in clones with abnormal first cleavage, and symmetric first two cleavages increased clone probability to reach later on 24 h- and hatching-stages. At 24 h-stage, 24% of the clones were diploids and from donor genetic origin only. However, ploidy and genetic origin did not determine clones morphological quality. DNA methylation reprogramming in the promoter region of pou2, nanog, and notail marker genes was highly variable, but clones with the nicest morphologies displayed the best DNA methylation reprogramming. To conclude, non-enucleated oocytes did allow authentic clones production. The first two cell cycles were a critical determinant of the clone ability to reach hatching-stage, and DNA methylation reprogramming significantly influenced clones morphological quality.


1997 ◽  
Vol 17 (2) ◽  
pp. 529-536 ◽  
Author(s):  
E Zamir ◽  
Z Kam ◽  
A Yarden

The early development of the zebra fish (Danio rerio) embryo is characterized by a series of rapid and synchronous cell cycles with no detectable transcription. This period is followed by the midblastula transition (MBT), during which the cell cycle gradually lengthens, cell synchrony is lost, and zygotic transcription is initially detected. In this work, we examined the changes in the pattern of the cell cycle during MBT in zebra fish and whether these changes are dependent on the initiation of zygotic transcription. To characterize the pattern of the early zebra fish cell cycles, the embryonic DNA content was determined by flow cytometric analysis. We found that G1 phase is below detection levels during the first 10 cleavages and can be initially detected at the onset of MBT. Inhibition of zygotic transcription, by microinjection of actinomycin D, abolished the appearance of G1 phase at MBT. Premature activation of zygotic transcription, by microinjection of nonspecific DNA, induced G1 phase before the onset of MBT, while coinjection of actinomycin D and nonspecific DNA abolished this early appearance of G1 phase. We therefore suggest that during the early development of the zebra fish embryo, G1 phase appears at the onset of MBT and that the activation of transcription at MBT is essential and sufficient for the G1-phase induction.


Zygote ◽  
2021 ◽  
pp. 1-6
Author(s):  
Liliana Burlibaşa ◽  
Alina-Teodora Nicu ◽  
Carmen Domnariu

Summary The process of cytodifferentiation in spermatogenesis is governed by a unique genetic and molecular programme. In this context, accurate ‘tuning’ of the regulatory mechanisms involved in germ cells differentiation is required, as any error could have dramatic consequences on species survival and maintenance. To study the processes that govern the spatial–temporal expression of genes, as well as analyse transmission of epigenetic information to descendants, an integrated approach of genetics, biochemistry and cytology data is necessary. As information in the literature on interplay between DNA methylation and histone H3 lysine 4 trimethylation (H3K4me3) in the advanced stages of murine spermatogenesis is still scarce, we investigated the effect of a DNA methyltransferase inhibitor, 5-aza-2′-deoxycytidine, at the cytological level using immunocytochemistry methodology. Our results revealed a particular distribution of H3K4me3 during sperm cell differentiation and highlighted an important role for regulation of DNA methylation in controlling histone methylation and chromatin remodelling during spermatogenesis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Krystyna Ślaska-Kiss ◽  
Nikolett Zsibrita ◽  
Mihály Koncz ◽  
Pál Albert ◽  
Ákos Csábrádi ◽  
...  

AbstractTargeted DNA methylation is a technique that aims to methylate cytosines in selected genomic loci. In the most widely used approach a CG-specific DNA methyltransferase (MTase) is fused to a sequence specific DNA binding protein, which binds in the vicinity of the targeted CG site(s). Although the technique has high potential for studying the role of DNA methylation in higher eukaryotes, its usefulness is hampered by insufficient methylation specificity. One of the approaches proposed to suppress methylation at unwanted sites is to use MTase variants with reduced DNA binding affinity. In this work we investigated how methylation specificity of chimeric MTases containing variants of the CG-specific prokaryotic MTase M.SssI fused to zinc finger or dCas9 targeting domains is influenced by mutations affecting catalytic activity and/or DNA binding affinity of the MTase domain. Specificity of targeted DNA methylation was assayed in E. coli harboring a plasmid with the target site. Digestions of the isolated plasmids with methylation sensitive restriction enzymes revealed that specificity of targeted DNA methylation was dependent on the activity but not on the DNA binding affinity of the MTase. These results have implications for the design of strategies of targeted DNA methylation.


Nature Plants ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 184-197
Author(s):  
Jianjun Jiang ◽  
Jie Liu ◽  
Dean Sanders ◽  
Shuiming Qian ◽  
Wendan Ren ◽  
...  

2020 ◽  
Author(s):  
Jing Wei ◽  
Jia Cheng ◽  
Nicholas J Waddell ◽  
Zi-Jun Wang ◽  
Xiaodong Pang ◽  
...  

Abstract Emerging evidence suggests that epigenetic mechanisms regulate aberrant gene transcription in stress-associated mental disorders. However, it remains to be elucidated about the role of DNA methylation and its catalyzing enzymes, DNA methyltransferases (DNMTs), in this process. Here, we found that male rats exposed to chronic (2-week) unpredictable stress exhibited a substantial reduction of Dnmt3a after stress cessation in the prefrontal cortex (PFC), a key target region of stress. Treatment of unstressed control rats with DNMT inhibitors recapitulated the effect of chronic unpredictable stress on decreased AMPAR expression and function in PFC. In contrast, overexpression of Dnmt3a in PFC of stressed animals prevented the loss of glutamatergic responses. Moreover, the stress-induced behavioral abnormalities, including the impaired recognition memory, heightened aggression, and hyperlocomotion, were partially attenuated by Dnmt3a expression in PFC of stressed animals. Finally, we found that there were genome-wide DNA methylation changes and transcriptome alterations in PFC of stressed rats, both of which were enriched at several neural pathways, including glutamatergic synapse and microtubule-associated protein kinase signaling. These results have therefore recognized the potential role of DNA epigenetic modification in stress-induced disturbance of synaptic functions and cognitive and emotional processes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wendan Ren ◽  
Huitao Fan ◽  
Sara A. Grimm ◽  
Jae Jin Kim ◽  
Linhui Li ◽  
...  

AbstractDNA methylation and trimethylated histone H4 Lysine 20 (H4K20me3) constitute two important heterochromatin-enriched marks that frequently cooperate in silencing repetitive elements of the mammalian genome. However, it remains elusive how these two chromatin modifications crosstalk. Here, we report that DNA methyltransferase 1 (DNMT1) specifically ‘recognizes’ H4K20me3 via its first bromo-adjacent-homology domain (DNMT1BAH1). Engagement of DNMT1BAH1-H4K20me3 ensures heterochromatin targeting of DNMT1 and DNA methylation at LINE-1 retrotransposons, and cooperates with the previously reported readout of histone H3 tail modifications (i.e., H3K9me3 and H3 ubiquitylation) by the RFTS domain to allosterically regulate DNMT1’s activity. Interplay between RFTS and BAH1 domains of DNMT1 profoundly impacts DNA methylation at both global and focal levels and genomic resistance to radiation-induced damage. Together, our study establishes a direct link between H4K20me3 and DNA methylation, providing a mechanism in which multivalent recognition of repressive histone modifications by DNMT1 ensures appropriate DNA methylation patterning and genomic stability.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 622
Author(s):  
Omeima Abdullah ◽  
Ziad Omran ◽  
Salman Hosawi ◽  
Ali Hamiche ◽  
Christian Bronner ◽  
...  

Silencing of tumor suppressor genes (TSGs) through epigenetic mechanisms, mainly via abnormal promoter DNA methylation, is considered a main mechanism of tumorigenesis. The abnormal DNA methylation profiles are transmitted from the cancer mother cell to the daughter cells through the involvement of a macromolecular complex in which the ubiquitin-like containing plant homeodomain (PHD), and an interesting new gene (RING) finger domains 1 (UHRF1), play the role of conductor. Indeed, UHRF1 interacts with epigenetic writers, such as DNA methyltransferase 1 (DNMT1), histone methyltransferase G9a, erasers like histone deacetylase 1 (HDAC1), and functions as a hub protein. Thus, targeting UHRF1 and/or its partners is a promising strategy for epigenetic cancer therapy. The natural compound thymoquinone (TQ) exhibits anticancer activities by targeting several cellular signaling pathways, including those involving UHRF1. In this review, we highlight TQ as a potential multitarget single epidrug that functions by targeting the UHRF1/DNMT1/HDAC1/G9a complex. We also speculate on the possibility that TQ might specifically target UHRF1, with subsequent regulatory effects on other partners.


2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Alex Sotolongo ◽  
Yi-Zhou Jiang ◽  
John Karanian ◽  
William Pritchard ◽  
Peter Davies

Objective: One of the first clinically detectable changes in the vasculature during atherogenesis is the accumulation of cholesterol within the vessel wall. Hypercholesterolemia is characterized by dysfunctional endothelial-dependent vessel relaxation and impaired NOS3 function. Since DNA methylation at gene promoter regions strongly suppresses gene expression, we postulated that high-fat/high-cholesterol diet suppresses endothelial NOS3 through promoter DNA methylation. Methods: Domestic male pigs were fed control diet (CD) or isocaloric high fat and high cholesterol diet (HC; 12% fat and 1.5% cholesterol) for 2, 4, 8 or 12 weeks prior to tissue collection. Furthermore, to determine the effects of risk factor withdrawal, an additional group of swine received HC for 12 weeks and then CD for 8 weeks; a control group received HC continuously for 20 weeks. Endothelial cells were harvested from common carotid aorta. In parallel in vitro studies, cultured human aortic endothelial cells (HAEC) were treated with human LDL, GW3956 (LXR agonist) and RG108 (DNA methyltransferase [DNMT] inhibitor). In cells from both sources, DNA methylation at the NOS3 promoter was measured using methylation specific pyro sequencing, and endothelial gene expression was measured using RT PCR. Results: HC diet increased plasma cholesterol level from 75 mg/dl on CD to a plateau of about 540 mg/dl within 2 weeks. Endothelial NOS3 expression was significantly reduced (71±9 % of CD) after 4 weeks of HC, a level sustained at subsequent time points. Withdrawal of HC for 8 weeks did not recover NOS3 expression. After 12-week HC, the NOS3 promoter was hypermethylated. Withdrawal of HC did not reverse NOS3 promoter methylation. In vitro treatment of HAEC with human LDL (200 mg/dl total cholesterol) or GW3956 (5μM) suppressed NOS3 mRNA to 50% and 30% respectively, suggesting that LXR/RXR is involved in suppression of NOS3. Nitric oxide production was consistently suppressed by GW3959. Both could be reversed through inhibition of DNMTs by RG108. Conclusions: DNA methylation and LXR/RXR pathway can mediate the HC-suppression of endothelial NOS3. The study identifies novel pharmaceutical targets in treating endothelial dysfunction. Crosstalk between these pathways is under investigation.


Sign in / Sign up

Export Citation Format

Share Document