Polar magnetic metallic state in few-layer BiFeO3

2021 ◽  
Vol 104 (17) ◽  
Author(s):  
Marco Campetella ◽  
Matteo Calandra
Keyword(s):  
2015 ◽  
Vol 8 (2) ◽  
pp. 2084-2093 ◽  
Author(s):  
PROLOY TARAN DAS ◽  
Arun Kumar Nigam ◽  
Tapan Kumar Nath

Nano-dimensional effects on electronic-, magneto-transport properties of granular ferromagnetic insulating (FMI) Pr0.8Sr0.2MnO3 (PSMO) manganite (down to 40 nm) have been investigated in details. From the electronic and magnetic transport properties, a metallic state has been observed in grain size modulation by suppressing the ferromagnetic insulating state of PSMO bulk system. A distinct metal-insulator transition (MIT) temperature around 150 K has been observed in all nanometric samples. The observed insulator to metallic transition with size reduction can be explained with surface polaron breaking model, originates due to enhanced grain surface disorder. This proposed phenomenological polaronic model plays a significant role to understand the polaronic destabilization process on the grain surface regime of these phase separated nano-mangnatie systems. Temperature dependent resistivity and magnetoresistance data in presence of external magnetic fields are investigated in details with various compatible models.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 744
Author(s):  
Christian Rodenbücher ◽  
Christo Guguschev ◽  
Carsten Korte ◽  
Sebastian Bette ◽  
Kristof Szot

In recent decades, the behavior of SrTiO3 upon annealing in reducing conditions has been under intense academic scrutiny. Classically, its conductivity can be described using point defect chemistry and predicting n-type or p-type semiconducting behavior depending on oxygen activity. In contrast, many examples of metallic behavior induced by thermal reduction have recently appeared in the literature, challenging this established understanding. In this study, we aim to resolve this contradiction by demonstrating that an initially insulating, as-received SrTiO3 single crystal can indeed be reduced to a metallic state, and is even stable against room temperature reoxidation. However, once the sample has been oxidized at a high temperature, subsequent reduction can no longer be used to induce metallic behavior, but semiconducting behavior in agreement with the predictions of point defect chemistry is observed. Our results indicate that the dislocation-rich surface layer plays a decisive role and that its local chemical composition can be changed depending on annealing conditions. This reveals that the prediction of the macroscopic electronic properties of SrTiO3 is a highly complex task, and not only the current temperature and oxygen activity but also the redox history play an important role.


2020 ◽  
Vol 39 (1) ◽  
pp. 297-303
Author(s):  
Toru Akasofu ◽  
Masanobu Kusakabe ◽  
Shigeru Tamaki

AbstractThe bonding character of liquid lead telluride \text{PbTe} is thermodynamically investigated in detail. Its possibility as an ionic melt composed of cation {\text{Pb}}^{2+} and anion {\text{Te}}^{2-} is not acceptable, by comparing the ionization energy of \text{Pb} atom, electron affinity of \text{Te} atom and the ionic bonding energy due to the cation {\text{Pb}}^{2+} and anion {\text{Te}}^{2-} with the help of structural information. Solid lead telluride PbTe as a narrow band gap semiconductor might yield easily the overlapping of the tail of valence band and that of conduction one. And on melting, it becomes to an ill-conditioned metallic state, which concept is supported by the electrical behaviors of liquid Pb–Te alloys observed by the present authors. As structural information tells us about the partial remain of some sorts of covalent-type mono-dipole and poly-dipole of the molecule \text{PbTe}, all systems are thermodynamically explained in terms of a mixture of these molecules and cations {\text{Pb}}^{4+} and {\text{Te}}^{2+} and a small amount of the conduction electrons are set free from these elements based on the ternary solution model.


Author(s):  
Bethany Bowden ◽  
Josh A. Davies-Jones ◽  
Matthew Davies ◽  
Philip R. Davies ◽  
David J. Morgan ◽  
...  

AbstractSurface functional groups have a strong influence on the deposition and final state of nanoparticles adsorbed on to the surface, a role discussed by Professor Spencer in his work. This tribute to Spencer explores the formation of hydroxyls, thiosulfates, sulfites and sulfur atoms on carbon (HOPG) surfaces and their effect on the deposition of gold and palladium from aqueous solutions. Hydroxyls formed from ammonium hydroxide treatment have identical behaviour to those formed by acid treatment, and gold adsorption from Au3+ solutions gives Au0 initially, with Au3+ formed at higher concentrations on these surfaces. In contrast, palladium adsorption is hindered by the presence of the hydroxyls and there is no indication of any reduction to the metallic state. Ammonium thiosulfate adsorbs dissociatively from aqueous solutions on HOPG if the surface is pre-activated by the presence of surface hydroxyls. At low concentrations of ammonium thiosulfate, adsorbed sulfite and sulfur are formed in equimolar concentrations whereas adsorption of high concentrations of ammonium thiosulfate gives some degree of molecular adsorption, with evidence in XP spectra for an ammonium ion and a sulfur 2p peak at 282.9 eV attributed to the undissociated thiosulfate ion. Both sulfur and the sulfite are stable at the surface in neutral solutions but the sulfite desorbs when treated with acidified solutions (~ pH ≤ 6). These two groups are also stable at 373 K but begin to desorb by 473 K. Exposure to a weak chloroauric acid solution causes the desorption of the sulfite and formation of a gold species with an XP binding energy of 84.6 eV; we cannot determine from the present data whether this peak is due to a Au(I) state or very small nanoparticles of Au(0). Graphic Abstract


Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 287
Author(s):  
Jianguo Liu ◽  
Mingyue Zhang ◽  
Longlong Ma

Dibenzylamine motifs are an important class of crucial organic compounds and are widely used in fine chemical and pharmaceutical industries. The development of the efficient, economical, and environmentally friendly synthesis of amines using transition metal-based heterogeneous catalysts remains both desirable and challenging. Herein, we prepared the covalent organic framework (COF)-supported heterogeneous reduced COF-supported Pd-based catalyst and used it for the one-pot reductive amination of aldehydes. There are both Pd metallic state and oxidated Pdσ+ in the catalysts. Furthermore, in the presence of the reduced COF-supported Pd-based catalyst, many aromatic, aliphatic, and heterocyclic aldehydes with various functional groups substituted were converted to their corresponding amines products in good to excellent selectivity (up to 91%) under mild reaction conditions (70 °C, 2 h, NH3, 20 bar H2). This work expands the covalent organic frameworks for the material family and its support catalyst, opening up new catalytic applications in the economical, practical, and effective synthesis of secondary amines.


2015 ◽  
Vol 91 (19) ◽  
Author(s):  
Hisao Kobayashi ◽  
Shugo Ikeda ◽  
Yoshitaka Yoda ◽  
Naohisa Hirao ◽  
Yasuo Ohishi ◽  
...  
Keyword(s):  

2012 ◽  
Vol 584 ◽  
pp. 229-233 ◽  
Author(s):  
Sakunthala Angamuthu Ananthan ◽  
Narayanan Vengidusamy ◽  
Krishnamoorthy Giribabu ◽  
Ranganathan Suresh

MWCNT supported Pt, Ru, and Pt–Ru catalysts were prepared and reduced at two different temperatures, 375°C (LTR) and 675°C (HTR) for the selective hydrogenation of citral to the corresponding unsaturated alcohols (geraniol and nerol). The catalysts were characterized by BET Surface area measurement, TPD, SEM, EDAX, TEM, XRD and XPS. It was found that the XRD of Pt and Ru shows fcc and hcp crystalline structure respectively, which is uniformly dispersed with an average particles size of 3.5 nm and zero valence metallic state. The removal of acidic oxygen surface group is observed when heat- treatments in a inert atmosphere at 675°C were performed. The bimetallic catalyst of Pt-Ru/MWCNT (HTR) was found to afford remarkably high conversion levels (85%) and high selectivity (95%) provided that a thermal pretreatment was performed on the catalyst. These results can be rationalized in terms of electron transfer from the support to the metal. The catalysts are environment friendly and can be recycled for more than eight times.


2011 ◽  
Vol 80 (Suppl.A) ◽  
pp. SA104 ◽  
Author(s):  
Kiyohiro Sugiyama ◽  
Yusuke Hirose ◽  
Kentaro Enoki ◽  
Shugo Ikeda ◽  
Etsuji Yamamoto ◽  
...  

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Zhuoyu Chen ◽  
Bai Yang Wang ◽  
Adrian G. Swartz ◽  
Hyeok Yoon ◽  
Yasuyuki Hikita ◽  
...  

AbstractAnomalous metallic behavior, marked by a saturating finite resistivity much lower than the Drude estimate, has been observed in a wide range of two-dimensional superconductors. Utilizing the electrostatically gated LaAlO3/SrTiO3 interface as a versatile platform for superconductor-metal quantum phase transitions, we probe variations in the gate, magnetic field, and temperature to construct a phase diagram crossing from superconductor, anomalous metal, vortex liquid, to the Drude metal state, combining longitudinal and Hall resistivity measurements. We find that the anomalous metal phases induced by gating and magnetic field, although differing in symmetry, are connected in the phase diagram and exhibit similar magnetic field response approaching zero temperature. Namely, within a finite regime of the anomalous metal state, the longitudinal resistivity linearly depends on the field while the Hall resistivity diminishes, indicating an emergent particle-hole symmetry. The universal behavior highlights the uniqueness of the quantum bosonic metallic state, distinct from bosonic insulators and vortex liquids.


Sign in / Sign up

Export Citation Format

Share Document