scholarly journals Coulomb distortion effects for(e,e′p)reactions at high electron energies

1999 ◽  
Vol 60 (6) ◽  
Author(s):  
K. S. Kim ◽  
L. E. Wright
Author(s):  
Paul J. Wright

Most industrial and academic geologists are familiar with the beautiful red and orange cathodoluminescence colours produced by carbonate minerals in an optical microscope with a cold cathode electron gun attached. The cement stratigraphies interpreted from colour photographs have been widely used to determine the post depositional processes which have modified sedimentary rock textures.However to study quartzose materials high electron densities and kV's are necessary to stimulate sufficient emission. A scanning electron microscope with an optical collection system and monochromator provides an adequate tool and gives the advantage of providing secondary and backscattered electron imaging as well as elemental analysis and distribution mapping via standard EDS/WDS facilities.It has been known that the incorporation of many elements modify the characteristics of the CL emissions from geological materials. They do this by taking up positions between the valence and conduction band thus providing sites to assist in the recombination of electron hole pairs.


Author(s):  
H. Alasam

The possibility that intrathymic T-cell differentiation involves stem cell-lymphoid interactions in embryos led us to study the ultrastructure of epithelial cell in normal embryonic thymus. Studies in adult thymus showed that it produces several peptides that induce T-cell differentiation. Several of them have been chemically characterized, such as thymosin α 1, thymopoietin, thymic humoral factor or the serum thymic factor. It was suggested that most of these factors are secreted by populations of A and B-epithelial cells.Embryonic materials were obtained from inbred matings of Swiss Albino mice. Thymuses were disected from embryos 17 days old and prepared for transmission electron microscopy. Our studies showed that embryonic thymus at this stage contains undifferentiated and differentiated epithelial cells, large lymphoblasts, medium and few small lymphocytes (Fig. 5). No differences were found between cortical and medullary epithelial cells, in contrast to the findings of Van Vliet et al,. Epithelial cells were mostly of the A-type with low electron density in both cytoplasm and nucleus. However few B-type with high electron density were also found (Fig. 7).


2003 ◽  
Vol 764 ◽  
Author(s):  
B. Luo ◽  
F. Ren ◽  
M. A. Mastro ◽  
D. Tsvetkov ◽  
A. Pechnikov ◽  
...  

AbstractHigh quality undoped AlGaN/GaN high electron mobility transistors(HEMTs) structures have been gorwn by Hydride Vapor Phase Epitaxy (HVPE). The morphology of the films grown on Al2O3 substrates is excellent with root-mean-square roughness of ∼0.2nm over 10×10μm2 measurement area. Capacitance-voltage measurements show formation of dense sheet of charge at the AlGaN/GaN interface. HEMTs with 1μm gate length fabricated on these structures show transconductances in excess of 110 mS/mm and drain-source current above 0.6A/mm. Gate lag measurements show similar current collapse characteristics to HEMTs fabricated in MBE- or MOCVD grown material.


Author(s):  
M. Bouya ◽  
D. Carisetti ◽  
J.C. Clement ◽  
N. Malbert ◽  
N. Labat ◽  
...  

Abstract HEMT (High Electron Mobility Transistor) are playing a key role for power and RF low noise applications. They are crucial components for the development of base stations in the telecommunications networks and for civil, defense and space radar applications. As well as the improvement of the MMIC performances, the localization of the defects and the failure analysis of these devices are very challenging. To face these challenges, we have developed a complete approach, without degrading the component, based on front side failure analysis by standard (Visible-NIR) and Infrared (range of wavelength: 3-5 µm) electroluminescence techniques. Its complementarities and efficiency have been demonstrated through two case studies.


Author(s):  
Lény Baczkowski ◽  
Franck Vouzelaud ◽  
Dominique Carisetti ◽  
Nicolas Sarazin ◽  
Jean-Claude Clément ◽  
...  

Abstract This paper shows a specific approach based on infrared (IR) thermography to face the challenging aspects of thermal measurement, mapping, and failure analysis on AlGaN/GaN high electron-mobility transistors (HEMTs) and MMICs. In the first part of this paper, IR thermography is used for the temperature measurement. Results are compared with 3D thermal simulations (ANSYS) to validate the thermal model of an 8x125pm AIGaN/GaN HEMT on SiC substrate. Measurements at different baseplate temperature are also performed to highlight the non-linearity of the thermal properties of materials. Then, correlations between the junction temperature and the life time are also discussed. In the second part, IR thermography is used for hot spot detection. The interest of the system for defect localization on AIGaN/GaN HEMT technology is presented through two case studies: a high temperature operating life test and a temperature humidity bias test.


1981 ◽  
Vol 17 (1) ◽  
pp. 36 ◽  
Author(s):  
W.I. Wang ◽  
C.E.C. Wood ◽  
L.F. Eastman
Keyword(s):  

1989 ◽  
Vol 25 (17) ◽  
pp. 1147
Author(s):  
A.L. Powell ◽  
J.S. Roberts ◽  
P.I. Rockett ◽  
T.J. Foster ◽  
L. Eaves

Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4160
Author(s):  
Xiaobin Li ◽  
Hongbo Ma ◽  
Junhong Yi ◽  
Song Lu ◽  
Jianping Xu

Compared with conventional forward converters, active clamp forward (ACF) converters have many advantages, including lower voltage stress on the primary power devices, the ability to switch at zero voltage, reduced EMI and duty cycle operation above 50%. Thus, it has been the most popular solution for the low bus voltage applications, such as 48 V and 28 V. However, because of the poor performance of Si MOSFETs, the efficiency of active clamp forward converters is difficult to further improved. Focusing on the bus voltage of 28 V with 18~36 V voltage range application, the Gallium Nitride high electron-mobility transistors (GaN HEMT) with ultralow on-resistance, low parasitic capacitances, and no reverse recovery, is incorporated into active clamp forward converters for achieving higher efficiency and power density, in this paper. Meanwhile, the comparative analysis is performed for Si MOSFET and GaN HEMT. In order to demonstrate the feasibility and validity of the proposed solution and comparative analysis, two 18~36 V input, 120 W/12 V output, synchronous rectification prototype with different power devices are built and compared in the lab. The experimental results show the GaN version can achieve the efficiency of 95.45%, which is around 1% higher than its counterpart under the whole load condition and the same power density of 2.2 W/cm3.


Sign in / Sign up

Export Citation Format

Share Document